Abstract
Phenotypic trait data play a central role in ecology and evolutionary research. The quality of trait data, and the findings of subsequent analyses, depend on the quality of measurement. However, most studies overlook measurement accuracy in their study designs. We investigated the repeatability of five frequently used linear measurements of avian traits: wing length, tarsus length, bill length, bill depth and bill width and the validity of proxies for three traits: bill surface area, structural body size and tarsus size, using species from the infra-order Meliphagides (honeyeaters, fairy wrens and their allies). Repeatability varied between traits and across species for a given trait: traits larger than 13 mm showed high repeatability compared with smaller traits. By incorporating microCT technology, we showed that the formula for the surface area of a cone, a widely used proxy of bill surface area, accurately describes bill surface area within species. Surface measurement of tarsus and wing lengths were valid proxies for underlying osteology. We recommend preliminary estimation of repeatability should be undertaken for individual traits prior to data collection, in order to design suitable protocols that improve data quality, while optimizing costs involved, particularly for traits < 13 mm.
Similar content being viewed by others
Data Availability
Please contact corresponding author for data requests.
Code Availability
Please contact corresponding author.
References
Aldrich, J. W., & James, F. C. (1991). Ecogeographic variation in the American Robin (Turdus migratorius). The Auk, 108(2), 230–249.
Anderson, A. M., Friis, C., Gratto-Trevor, C. L., Morrison, R. I. G., Smith, P. A., & Nol, E. (2019). Consistent declines in wing lengths of Calidridine sandpipers suggest a rapid morphometric response to environmental change. PLoS ONE, 14(4), e0213930. https://doi.org/10.1371/journal.pone.0213930.
Andrea, C., & Chiappelli, M. (2019). How flat can a horse be? Exploring 2D approximations of 3D crania in equids. bioRxiv. https://doi.org/10.1101/772624.
Baldwin, S. P., Oberholser, H. C., & Worley, L. G. (1931). Measurements of birds. Cleveland: Cleveland Museum of Natural History.
Benítez-díaz, H. (1993). Geographic variation in morphology and coloration of the Acorn Woodpecker (Melanerpes formicivorus). Condor, 95, 63–71.
Billionnet, A. (2018). Phylogenetic conservation prioritization with uncertainty. Biodiversity and Conservation, 27, 3137–3153. https://doi.org/10.1007/s10531-018-1593-z.
Blackburn, T. M., & Gaston, K. J. (1994). Animal body size distributions: Patterns, mechanisms and implications. Trends in Ecology and Evolution, 9, 471–474. https://doi.org/10.1016/0169-5347(94)90311-5.
Blackwell, G. L., Bassett, S. M., & Dickman, C. R. (2006). Measurement error associated with external measurements commonly used in small-mammal studies. Journal of Mammalogy, 87(2), 216–223. https://doi.org/10.1644/05-mamm-a-215r1.1.
Barrett, R. T., Peterz, M., Furness, R. W., & Durinck, J. (1989). The variability of biometric measurements. Ringing & Migration, 10, 13–16. https://doi.org/10.1080/03078698.1989.9676001.
Buser, T. J., Sidlauskas, B. L., & Summers, A. P. (2018). 2D or not 2D? Testing the utility of 2D vs. 3D landmark data in geometric morphometrics of the sculpin subfamily Oligocottinae (Pisces; Cottoidea). The Anatomical Record, 301(5), 806–818. https://doi.org/10.1002/ar.23752.
Campbell-Tennant, D. J. E., Gardner, J. L., Kearney, M. R., & Symonds, M. R. E. (2015). Climate-related spatial and temporal variation in bill morphology over the past century in Australian parrots. Journal of Biogeography, 42(6), 1163–1175. https://doi.org/10.1111/jbi.12499.
Carriquiry, A. L. (2015). Measurement Error models. In J. D. Wright (Ed.), International encyclopaedia of the social and behavioural sciences (2nd ed., pp. 850–855). Oxford: Elsevier.
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G. (2008). Meshlab: an open-source mesh processing tool. In Proceedings of the Eurographics Italian Chapter Conference (pp. 129–136). Salerno, Italy.
Dinno, A. (2017). dunn.test: Dunn’s test of multiple comparisons using rank sums. R package version 1.3.5. http://CRAN.R-project.org/package=dunn.test.
Friedman, N. R., Harmáčková, L., Economo, E. P., & Remeš, V. (2017). Smaller beaks for colder winters: Thermoregulation drives beak size evolution in Australasian songbirds. Evolution. https://doi.org/10.1111/evo.13274.
Freeman, S., & Jackson, W. M. (1990). Univariate metrics are not adequate to measure avian body size. The Auk, 107(1), 69–74. https://doi.org/10.1093/auk/107.1.69.
Flinks, H., & Salewski, V. (2012). Quantifying the effect of feather abrasion on wing and tail lengths measurements. Journal of Ornithology, 153(4), 1053–1065. https://doi.org/10.1007/s10336-012-0834-2.
Fuller, W. A. (1987). Measurement Error Models. New York: Wiley.
Gardner, J. L., Amano, T., Backwell, P. R. Y., Ikin, K., Sutherland, W. J., & Peters, A. (2014a). Temporal patterns of avian body size reflect linear size responses to broad scale environmental change over the last 50 years. Journal of Avian Biology, 45(6), 529–535. https://doi.org/10.1111/jav.00431.
Gardner, J. L., Amano, T., Mackey, B. G., Sutherland, W. J., Clayton, M., & Peters, A. (2014b). Dynamic size responses to climate change: Prevailing effects of rising temperature drive long-term body size increases in a semi-arid passerine. Global Change Biology. https://doi.org/10.1111/gcb.12507.
Gardner, J. L., Symonds, M. R. E., Joseph, L., Ikin, K., Stein, J., & Kruuk, L. E. B. (2016). Spatial variation in avian bill size is associated with humidity in summer among Australian passerines. Climate Change Responses, 3(1), 11. https://doi.org/10.1186/s40665-016-0026-z.
Gardner, J. L., Amano, T., Peters, A., Sutherland, W. J., Mackey, B., Joseph, L., et al. (2019). Australian songbird body size tracks climate variation: 82 species over 50 years. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2019.2258.
Goodenough, A. E., Stafford, R., Catlin-Groves, C. L., Smith, A. L., & Hart, A. G. (2010). Within- and among-observer variation in measurements of animal biometrics and their influence on accurate quantification of common biometric-based condition indices. Annales Zoologici Fennici, 47, 323–334.
Gosler, A. G. (1987). Pattern and process in the bill morphology of the Great Tit Parus major. Ibis, 129(s2), 451–476. https://doi.org/10.1111/j.1474-919X.1987.tb08234.x.
Gould, F. D. (2014). To 3D or not to 3D, that is the question: Do 3D surface analyses improve the ecomorphological power of the distal femur in placental mammals? PLoS ONE, 9(3), e91719. https://doi.org/10.1371/journal.pone.0091719.
Greenberg, R., Cadena, V., Danner, R. M., & Tattersall, G. J. (2012). Heat loss may explain bill size differences between birds occupying different habitats. PLoS ONE. https://doi.org/10.1371/journal.pone.0040933.
Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., et al. (2008). A phylogenomic study of birds reveals their evolutionary history. Science, 320, 1763–1768. https://doi.org/10.1126/science.1157704.
Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33(2), 1–22.
Hadfield, J. D., & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23(3), 494–508. https://doi.org/10.1111/j.1420-9101.2009.01915.x.
Hallgrímsson, B., & Maiorana, V. (1999). Variability and size in mammals and birds. Biological Journal of the Linnean Society, 70(4), 571–595. https://doi.org/10.1111/j.1095-8312.2000.tb00218.x.
Harper, D. G. C. (1994). Some comments on the repeatability of measurements. Ringing and Migration, 15(2), 84–90. https://doi.org/10.1080/03078698.1994.9674078.
Harris, E. F., & Smith, R. N. (2009). Accounting for measurement error: A critical but often overlooked process. Archives of Oral Biology, 54, S107–S117. https://doi.org/10.1016/j.archoralbio.2008.04.010.
Hick, J., & Emmerson, R. (2014). RCGP AKT: Research, epidemiology and statistics. Florida, Boca Raton: CRC Press.
Hyslop, R., & Imbens, G. (2001). Bias from classical and other forms of measurement error. Journal of Business and Economic Statistics, 19(4), 475–481.
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491, 444–448. https://doi.org/10.1038/nature11631.
Kiat, Y., & Sapir, N. (2017). Age-dependent modulation of songbird summer feather molt by temporal and functional constraints. The American Naturalist, 189(2), 184–195. https://doi.org/10.1086/690031.
Kruuk, L. E. B., Slate, J., Pemberton, J. M., Brotherstone, S., Guinness, F., & Clutton-Brock, T. (2002). Antler size in red deer: Heritability and selection but no evolution. Evolution, 56(8), 1683–1695. https://doi.org/10.1111/j.0014-3820.2002.tb01480.x.
Leverton, R. (1989). Wing length changes in individually-marked Blackbirds Turdus merula following moult. Ringing and Migration, 10(1), 17–25. https://doi.org/10.1080/03078698.1989.9676002.
Limaye, A. (2012). Drishti: a volume exploration and presentation tool. In: Proceedings of SPIE 8506, Developments in X-ray Tomography VIII, 85060X.
Lougheed, S. C., Arnold, T. W., & Bailey, R. C. (1991). Measurement error of external and skeletal variables in birds and its effect on principal components. The Auk, 108, 432–436.
Luther, D., & Greenberg, R. (2014). Habitat type and ambient temperature contribute to bill morphology. Ecology and Evolution. https://doi.org/10.1002/ece3.911.
Martin, J. L., & Pitocchelli, J. (1991). Relation of within-population phenotypic variation with sex, season, and geography in the blue tit. The Auk, 108(4), 833–841.
Matthysen, E. (1989). Seasonal variation in bill morphology of nuthatches Sitta europaea: dietary adaptations or consequences. Ardea, 77, 117–125.
Mawdsley, J. R., O’Malley, R., & Ojima, D. S. (2009). A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology, 23(5), 1080–1089. https://doi.org/10.1111/j.1523-1739.2009.01264.x.
Menkhorst, P., Rogers, D. I., Clarke, R., Davies, J. N., Marsack, P., Franklin, K., & CSIRO. (2017). The Australian bird guide. Clayton: CSIRO Publishing.
McLean, E. H., Prober, S. M., Stock, W. D., Steane, D. A., Potts, B. M., Vaillancourt, R. E., & Byrne, M. (2014). Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Plant, Cell and Environment, 37(6), 1440–1451. https://doi.org/10.1111/pce.12251.
Mooers, A. Ø., Faith, D. P., & Maddison, W. P. (2008). Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS ONE, 3, e3700. https://doi.org/10.1371/journal.pone.0003700.
Muñoz-Muñoz, F., & Perpiñán, D. (2010). Measurement error in morphometric studies: Comparison between manual and computerized methods. Annales Zoologici Fennici, 47(1), 46–56.
Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biological Reviews, 85(4), 935–956. https://doi.org/10.1111/j.1469-185X.2010.00141.x.
Nudds, R. L. (2007). Wing-bone length allometry in birds. Journal of Avian Biology, 38(4), 515–519.
Nudds, R. L., & Oswald, S. A. (2007). An interspecific test of Allen’s rule: Evolutionary implications for endothermic species. Evolution, 61(12), 2839–2848. https://doi.org/10.1111/j.1558-5646.2007.00242.x.
Nudds, R. L., Kaiser, G. W., & Dyke, G. J. (2011). Scaling of avian primary feather length. PLoS ONE, 6(2), e15665–e15665.
O’gorman, E. J., & Hone, D. W. E. (2012). Body size distribution of the dinosaurs. PLoS ONE, 7(12), e51925. https://doi.org/10.1371/journal.pone.0051925.
Openshaw, G. H., D’Amore, D. C., Vidal-García, M., & Keogh, J. S. (2017). Combining geometric morphometric analyses of multiple 2D observation views improves interpretation of evolutionary allometry and shape diversification in monitor lizard (Varanus) crania. Biological Journal of the Linnean Society, 120(3), 539–552. https://doi.org/10.1111/bij.12899.
O’Sullivan, R. J., Aykanat, T., Johnston, S. E., Kane, A., Poole, R., Rogan, G., et al. (2019). Evolutionary stasis of a heritable morphological trait in a wild fish population despite apparent directional selection. Ecology and Evolution, 9(12), 7096–7111. https://doi.org/10.1002/ece3.5274.
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412.
Perktaş, U., & Gosler, A. G. (2010). Measurement error revisited: Its importance for the analysis of size and shape of Birds. Acta Ornithologica, 45(2), 161–172. https://doi.org/10.3161/000164510X551309.
Ponzi, E., Keller, L. F., Bonnet, T., & Muff, S. (2018). Heritability, selection, and the response to selection in the presence of phenotypic measurement error: Effects, cures, and the role of repeated measurements. Evolution, 72(10), 1992–2004. https://doi.org/10.1111/evo.13573.
Prober, S. M., Byrne, M., McLean, E. H., Steane, D. A., Potts, B. M., Vaillancourt, R. E., & Stock, W. D. (2015). Climate-adjusted provenancing: A strategy for climate-resilient ecological restoration. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2015.00065.
Rising, J. D., & Somers, K. M. (1989). The measurement of overall body size in birds. The Auk, 106(4), 666–674. https://doi.org/10.1093/auk/106.4.666.
Rothstein, S. I. (1973). The Niche-variation model-is it valid? The American Naturalist, 107, 598–620. https://doi.org/10.1086/282862.
Salewski, V., Siebenrock, K.-H., Hochachka, W. M., Woog, F., & Fiedler, W. (2014). Morphological change to birds over 120 years is not explained by thermal adaptation to climate change. PLoS ONE, 9(7), e101927–e101927. https://doi.org/10.1371/journal.pone.0101927.
Semple, T. L., Peakall, R., & Tatarnic, N. J. (2019). A comprehensive and user-friendly framework for 3D-data visualisation in invertebrates and other organisms. Journal of Morphology, 280(2), 223–231. https://doi.org/10.1002/jmor.20938.
Senar, J. C., & Pascual, J. (1997). Keel and tarsus length may provide a good predictor of avian body size. Ardea, 85, 269–274.
Stephens, R. B., Karau, K. H., Yahnke, C. J., Wendt, S. R., & Rowe, R. J. (2015). Dead mice can grow: Variation of standard external mammal measurements from live and three postmortem body states. Journal of Mammalogy, 96(1), 185–193. https://doi.org/10.1093/jmamma/gyu022.
Stettenheim, P. R. (2015). The integumentary morphology of modern birds: An overview. Integrative and Comparative Biology, 40(4), 461–477. https://doi.org/10.1093/icb/40.4.461.
Sulloway, F. J., & Kleindorfer, S. (2013). Adaptive divergence in a ground finch. Biological Journal of the Linnean Society, 110, 45–59. https://doi.org/10.1111/bij.12108.
Symonds, M. R. E., & Tattersall, G. J. (2010). Geographical variation in bill size across bird species provides evidence for Allen’s rule. The American Naturalist. https://doi.org/10.1086/653666.
Temeles, E. J., Koulouris, C. R., Sander, S. E., & Kress, W. J. (2009). Effect of flower shape and size on foraging performance and trade-offs in a tropical hummingbird. Ecology, 90, 1147–1161. https://doi.org/10.1890/08-0695.1.
Thiele, K. R. (1993). The holy grail of the perfect character: The cladistic treatment of morphometric data. Cladistics, 9, 275–304. https://doi.org/10.1006/clad.1993.1020.
Totterman, S. L. (2016). Random measurement error and specimen shrinkage in short-tailed shearwaters Puffinus tenuirostris. Marine Ornithology, 44, 11–20.
Van Valen, L. (1965). Morphological variation and width of ecological niche. The American Naturalist, 99, 377–390.
Warton, D. I., Duursma, R. A., Falster, D. S., & Taskinen, S. (2018). smatr:(Standardised) Major Axis Estimation and Testing Routines. R package version 3.4-8. https://CRAN.R-project.org/package=smatr.
Wiens, J. J. (2004). The Role of Morphological Data in Phylogeny Reconstruction. Systematic Biology, 53(4), 653–661. https://doi.org/10.1080/10635150490472959.
Wiklund, C. G. (1996). Body length and wing length provide univariate estimates of overall body size in the merlin. The Condor, 98(3), 581–588. https://doi.org/10.2307/1369570.
Winkler, K. (1998). Suggestions for measuring external characters of birds. Ornitologia Neotropical, 9, 23–30.
Yezerinac, S. M., Lougheed, S. C., & Handford, P. (1992). Measurement error and morphometric studies: Statistical power and observer experience. Systematic Biology, 41(4), 471–482. https://doi.org/10.2307/2992588.
Acknowledgements
We thank Jesse Smith and Roellen Little for undertaking all wing measurements, and the staff at The Australian National Wildlife Collection, Australian Museum, Museum Victoria, Queensland Museum, Queen Victoria Museum and Art Gallery, South Australian Museum, Western Australian Museum, Tasmanian Museum and Art gallery for providing access to specimens. We also thank Emma Sherratt for general advice on 3D imaging and analysis, Terry Neeman at ANU, for advice on statistical analyses, and Cathy Gillespie at the John Curtin School of Medical Research, ANU, for technical assistance in 3D imaging and Peter Marsack for allowing us to use his bird illustrations. We are also grateful to an anonymous reviewer, Lynda Sharpe and Heather McGinness for helpful comments on the draft manuscript.
Funding
This work was partly funded by The Commonwealth Scientific and Industrial Research Organisation (PHD17-27) and the Recent Ecological Change in Australia project through the Department of Agriculture, Water and Environment (DAWE). KS was supported by ANU HDR Fee Merit Scholarship, University Research Scholarship and CSIRO research plus top-up scholarship (PHD17-27). MVG is supported by the University of Calgary's Banting Research Allowance and an ACHRI Postdoctoral Fellowship.
Author information
Authors and Affiliations
Contributions
KS and JG conceived the idea; KS, JG and MVG developed the methods; KS, TB and MRES designed the analyses; KS collected and analysed the data and wrote the manuscript; all authors read the manuscript and provided feedback.
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no competing interests.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Subasinghe, K., Symonds, M.R.E., Vidal-García, M. et al. Repeatability and Validity of Phenotypic Trait Measurements in Birds. Evol Biol 48, 100–114 (2021). https://doi.org/10.1007/s11692-020-09527-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11692-020-09527-5