Skip to main content
Log in

Climatic Niche Evolution in the Arremon brunneinucha Complex (Aves: Passerellidae) in a Mesoamerican Landscape

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The identification of mechanisms that have generated biodiversity is one of the major tasks in biogeography and evolutionary biology. Here, using a set of environmental variables and historical presence records, we assessed whether closely related allopatric lineages in the Arremon brunneinucha (Aves: Passerellidae) complex are either more ecologically similar or different throughout their distribution in Mesoamerica. Using PCA-env approximation, niche similarity tests, and comparative approaches, we analysed niche evolution in this species complex and the relative role of geographic and environmental factors on shaping lineage divergence. Our results suggest that most (95.24%) of the evolutionary lineages included in the A. brunneinucha complex have a null to low climatic niche overlap (Schoener’s D = 0.0–0.2), in addition, our data rejected the hypothesis of niche similarity among these lineages in 17 paired comparison cases (80.94%). We found that allopatric and nearly parapatric lineages both show evidence that their ecological niches have been maintained by sharp climatic gradients. These patterns suggest that divergence in these evolutionary lineages has been promoted due to different environmental conditions and evolutionary pressures, which in concert with geographical barriers to gene flow, have led to diversification in the A. brunneinucha complex throughout Mesoamerica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data have not been archived. All of the analysed datasets and R-scripts generated in our study are available from the first author upon request.

References

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2014). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography,38(5), 541–545.

    Google Scholar 

  • Avise, J. C. (2000). Phylogeography: The history and formation of species. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., et al. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling,222(11), 1810–1819.

    Google Scholar 

  • Beheregaray, L. B., Cooke, G. M., Chao, N. L., & Landguth, E. L. (2015). Ecological speciation in the tropics: Insights from comparative genetic studies in Amazonia. Frontiers in Genetics,5, 477.

    PubMed  PubMed Central  Google Scholar 

  • Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling,275(10), 73–77.

    Google Scholar 

  • Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., et al. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography,21(4), 481–497.

    Google Scholar 

  • Burney, C. W., & Brumfield, R. T. (2009). Ecology predicts levels of genetic differentiation in Neotropical birds. The American Naturalist,174(3), 358–368.

    PubMed  Google Scholar 

  • Butler, M. A., & King, A. A. (2004). Phylogenetic comparative analysis: A modeling approach for adaptive evolution. The American Naturalist,164(6), 683–695.

    PubMed  Google Scholar 

  • Cadena, C. D., Klicka, J., & Ricklefs, R. E. (2007). Evolutionary differentiation in the Neotropical montane region: Molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves, Emberizidae). Molecular Phylogenetics and Evolution,44(3), 993–1016.

    CAS  PubMed  Google Scholar 

  • Chávez, M. A. Q., Cruz, R. A., Fernández, J. A., Martínez, G. Q., & Moreno-Contreras, I. (2018). Distribution of Pinyon Jay Gymnorhinus cyanocephalus in Chihuahua, Mexico: New records and environmental characterisation. Bulletin of the British Ornithologists’ Club,138(1), 30–41.

    Google Scholar 

  • Cobos, M. E., Peterson, A. T., Osorio-Olvera, L., & Jiménez-García, D. (2019). An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecological Informatics,53, 100983.

    Google Scholar 

  • Cooper, N., Jetz, W., & Freckleton, R. P. (2010). Phylogenetic comparative approaches for studying niche conservatism. Journal of Evolutionary Biology,23(12), 2529–2539.

    CAS  PubMed  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates Inc.

    Google Scholar 

  • De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology,56(6), 879–886.

    PubMed  Google Scholar 

  • Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D'Amen, M., Randin, C., et al. (2017). ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography,40(6), 774–787.

    Google Scholar 

  • Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., et al. (2017). An ecoregion-based approach to protecting half the terrestrial realm. BioScience,67(6), 534–545.

    PubMed  PubMed Central  Google Scholar 

  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography,36(1), 27–46.

    Google Scholar 

  • Dupin, M., Reynaud, P., Jarošík, V., Baker, R., Brunel, S., Eyre, D., et al. (2011). Effects of the training dataset characteristics on the performance of nine species distribution models: Application to Diabrotica virgifera virgifera. PLoS ONE,6, e20957.

    CAS  PubMed  PubMed Central  Google Scholar 

  • ESRI. (2015). ArcMap 10.3. Redlands, CA: Environmental System Research Institute Inc.

    Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist,125(1), 1–15.

    Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology,37(12), 4302–4315.

    Google Scholar 

  • Fourcade, Y., Besnard, A. G., & Secondi, J. (2017). Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography,27(2), 245–256.

    Google Scholar 

  • Gill, F., & Donsker, D. (2018). IOC World Bird List (v8.2). Retrieved September 15, 2018, from https://doi.org/10.14344/IOC.ML.8.2.

  • Hansen, T. F. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution,51(5), 1341–1351.

    PubMed  Google Scholar 

  • Hanspach, J., Kühn, I., Schweiger, O., Pompe, S., & Klotz, S. (2011). Geographical patterns in prediction errors of species distribution models. Global Ecology and Biogeography,20, 779–788.

    Google Scholar 

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2007). GEIGER: Investigating evolutionary radiations. Bioinformatics,24(1), 129–131.

    PubMed  Google Scholar 

  • Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Jennings, W. B., et al. (2010). Early bursts of body size and shape evolution are rare in comparative data. Evolution,64(8), 2385–2396.

    PubMed  Google Scholar 

  • Harvey, M. G., Aleixo, A., Ribas, C. C., & Brumfield, R. T. (2017). Habitat association predicts genetic diversity and population divergence in Amazonian birds. The American Naturalist,190(5), 631–648.

    PubMed  Google Scholar 

  • Hernández-Romero, P. C., Gutiérrez-Rodríguez, C., Valdespino, C., & Prieto-Torres, D. A. (2018). The role of geographical and ecological factors on population divergence of the Neotropical otter Lontra longicaudis (Carnivora, Mustelidae). Evolutionary Biology,45(1), 37–55.

    Google Scholar 

  • Howard, R., & Moore, A. (2003). The Howard and Moore complete checklist of the birds of the world (3rd ed.). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Hu, J., Broennimann, O., Guisan, A., Wang, B., Huang, Y., & Jiang, J. (2016). Niche conservatism in Gynandropaa frogs on the southeastern Qinghai-Tibetan Plateau. Scientific Reports,6, 32624.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, X., & Wiens, J. J. (2013). How does climate influence speciation? The American Naturalist,182(1), 1–12.

    PubMed  Google Scholar 

  • Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., et al. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data,4, 170122.

    PubMed  PubMed Central  Google Scholar 

  • Kozak, K. H., & Wiens, J. (2006). Does niche conservatism promote speciation? A case study in North American salamanders. Evolution,60(12), 2604–2621.

    PubMed  Google Scholar 

  • Kozak, K. H., Graham, C. H., & Wiens, J. J. (2008). Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology and Evolution,23(3), 141–148.

    PubMed  Google Scholar 

  • McCormack, J. E., Zellmer, A. J., & Knowles, L. L. (2010). Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: Insights from tests with niche models. Evolution,64(5), 1231–1244.

    PubMed  Google Scholar 

  • Navarro-Sigüenza, A. G., Peterson, A. T., & Gordillo-Martínez, A. (2003). Museums working together: The atlas of the birds of Mexico. Bulletin of the British Ornithologists’ Club,123A, 207–225.

    Google Scholar 

  • Navarro-Sigüenza, A. G., García-Hernández, M. A., & Peterson, A. T. (2013). A new species of brush-finch (Arremon; Emberizidae) from western Mexico. The Wilson Journal of Ornithology,125(3), 443–453.

    Google Scholar 

  • Navarro-Sigüenza, A. G., Peterson, A. T., Nyari, A., García-Deras, G. M., & García-Moreno, J. (2008). Phylogeography of the Buarremon brush-finch complex (Aves, Emberizidae) in Mesoamerica. Molecular Phylogenetics and Evolution,47(1), 21–35.

    PubMed  Google Scholar 

  • Núñez-Zapata, J., Benites, P., Gutiérrez-Arellano, C., Ortiz-Ramírez, M. F., & Navarro-Sigüenza, A. G. (2018). Local adaptation vs. historical isolation as sources of melanin-based coloration in the white-throated thrush (Turdus assimilis). Journal of Avian Biology,49(9), e01790.

    Google Scholar 

  • Ornelas, J. F., Sosa, V., Soltis, D. E., Daza, J. M., González, C., Soltis, P. S., et al. (2013). Comparative phylogeographic analyses illustrate the complex evolutionary history of threatened cloud forests of northern Mesoamerica. PLoS ONE,8(2), e56283.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Rodriguez, A. E., Ornelas, J. F., & Ruiz-Sanchez, E. (2018). A jungle tale: Molecular phylogeny and divergence time estimates of the Desmopsis-Stenanona clade (Annonaceae) in Mesoamerica. Molecular Phylogenetics and Evolution,122, 80–94.

    PubMed  Google Scholar 

  • Parkes, K. C. (1954). A revision of the Neotropical finch Atlapetes brunneinucha. The Condor,56(3), 129–138.

    Google Scholar 

  • Parkes, K. C. (1957). The juvenal plumages of the finch genera Atlapetes and Pipilo. The Auk,74(4), 499–502.

    Google Scholar 

  • Peterson, A. T. (2001). Predicting species’ geographic distributions based on ecological niche modelling. The Condor,103(3), 599–605.

    Google Scholar 

  • Peterson, A. T. (2011). Ecological niche conservatism: A time-structured review of evidence. Journal of Biogeography,38(5), 817–827.

    Google Scholar 

  • Peterson, A. T., & Holt, R. D. (2003). Niche differentiation in Mexican birds: Using point occurrences to detect ecological innovation. Ecology Letters,6(8), 774–782.

    Google Scholar 

  • Peterson, A. T., Escalante, P. P., & Navarro, A. (1992). Genetic variation and differentiation in Mexican populations of Common Bush-Tanagers and Chestnut-capped Brush-Finches. The Condor,94(1), 244–253.

    Google Scholar 

  • Peterson, A., Soberón, J., & Sánchez-Cordero, V. (1999). Conservatism of ecological niches in evolutionary time. Science,285(5431), 1265–1267.

    CAS  PubMed  Google Scholar 

  • Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., et al. (2011). Ecological niches and geographic distributions. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Peterson, A. T., Navarro-Sigüenza, A. G., Martínez-Meyer, E., Cuervo-Robayo, A. P., Berlanga, H., & Soberón, J. (2015). Twentieth century turnover of Mexican endemic avifaunas: Landscape change versus climate drivers. Science Advances,1(4), e1400071.

    PubMed  PubMed Central  Google Scholar 

  • Peterson, A. T., Navarro-Sigüenza, A. G., & Gordillo-Martínez, A. (2016). The development of ornithology in Mexico and the importance of access to scientific information. Archives of Natural History,43(2), 294–304.

    Google Scholar 

  • Price, T. (2008). Speciation in birds. Greenwood Village, CO: Roberts and Company Publishers.

    Google Scholar 

  • Prieto-Torres, D. A., Rojas-Soto, O. R., Bonaccorso, E., Santiago-Alarcon, D., & Navarro-Sigüenza, A. G. (2019). Distributional patterns of Neotropical seasonally dry forest birds: A biogeographical regionalization. Cladistics,35(4), 446–460.

    Google Scholar 

  • R Development Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Remsen, J., Jr., & Graves, W. S., IV. (1995). Distribution patterns of Buarremon brush-finches (Emberizinae) and interspecific competition in Andean birds. The Auk,112(1), 225–236.

    Google Scholar 

  • Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution,3(2), 217–223.

    Google Scholar 

  • Revell, L. J. (2013). Two new graphical methods for mapping trait evolution on phylogenies. Methods in Ecology and Evolution,4(8), 754–759.

    Google Scholar 

  • Rödder, D., & Engler, J. (2011). Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks. Global Ecology and Biogeography,20(6), 915–927.

    Google Scholar 

  • Rodrigues, J. F. M., Villalobos, F., Iverson, J. B., & Diniz-Filho, J. A. F. (2018). Climatic niche evolution in turtles is characterized by phylogenetic conservatism for both aquatic and terrestrial species. Journal of Evolutionary Biology,32(1), 66–75.

    PubMed  Google Scholar 

  • Root, T. (1988). Environmental factors associated with avian distributional boundaries. Journal of Biogeography,15(3), 489–505.

    Google Scholar 

  • Salariato, D. L., & Zuloaga, F. O. (2017). Climatic niche evolution in the Andean genus Menonvillea (Cremolobeae: Brassicaceae). Organisms Diversity & Evolution,17(1), 11–28.

    Google Scholar 

  • Sánchez-González, L. A., Morrone, J. J., & Navarro-Sigüenza, A. G. (2008). Distributional patterns of the Neotropical humid montane forest avifaunas. Biological Journal of the Linnean Society,94(1), 175–194.

    Google Scholar 

  • Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science,323(5915), 737–741.

    CAS  PubMed  Google Scholar 

  • Schoener, T. W. (1968). The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology,49(4), 704–726.

    Google Scholar 

  • Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H., & Warren, D. (2019). Niche estimation above and below the species level. Trends in Ecology and Evolution,34(3), 260–273.

    PubMed  Google Scholar 

  • Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics,2, 1–10.

    Google Scholar 

  • Suzuki, R., & Shimodaira, H. (2006). Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics,22(12), 1540–1542.

    CAS  PubMed  Google Scholar 

  • Tuanmu, M. N., & Jetz, W. (2015). A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography,24(11), 1329–1339.

    Google Scholar 

  • Van Valen, L. (1976). Ecological species, multispecies, and oaks. Taxon,25(2/3), 233–239.

    Google Scholar 

  • Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution,62(11), 2868–2883.

    PubMed  Google Scholar 

  • Wei, T., & Simko., V. (2017). R package “corrplot”: Visualization of a correlation matrix. R package version 0.84. Retrieved April 14, 2018, from https://github.com/taiyun/corrplot.

  • Wiens, J. J. (2004a). Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution,58(1), 193–197.

    PubMed  Google Scholar 

  • Wiens, J. J. (2004b). What is speciation and how should we study it? The American Naturalist,163(6), 914–923.

    PubMed  Google Scholar 

  • Wiens, J. J. (2008). Commentary on Losos (2008): niche conservatism déjà vu. Ecology Letters,11(10), 1004–1005.

    PubMed  Google Scholar 

  • Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics,36, 519–539.

    Google Scholar 

  • Zink, R., & Remsen, J. V., Jr. (1986). Evolutionary processes and patterns of geographic variation in birds. Current Ornithology,4, 1–69.

    Google Scholar 

Download references

Acknowledgements

This paper is part of the requirements for the M. Sc. Degree of IM-C. We are also grateful to Museo de Zoología, Facultad de Ciencias (UNAM) and the curators of the biological collections for granting access to specimen records for this study. This work was supported by CONACyT and Posgrado en Ciencias Biológicas of the Universidad Nacional Autónoma de México (UNAM) under a Master scholarship grant [number 451119] assigned to IM-C. Financial support was also obtained from a PAPIIT-UNAM grant to AGN-S (IN 215818), PAEP-UNAM support to IM-C, and a Postdoctoral scholarship of DGAPA-UNAM to DAP-T. Alejandro Gordillo coordinated the geolocation of locality data. We thank A. T. Peterson (UK), and one anonymous reviewer for valuable discussions that improved this article.

Author information

Authors and Affiliations

Authors

Contributions

IM-C, AGN-S, and LAS-G designed the study. IM-C and DAP-T developed the analyses. All authors contributed in the analysis and interpretation of results, and in the writing of the manuscript.

Corresponding author

Correspondence to Adolfo G. Navarro-Sigüenza.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Contreras, I., Sánchez-González, L.A., Arizmendi, M.C. et al. Climatic Niche Evolution in the Arremon brunneinucha Complex (Aves: Passerellidae) in a Mesoamerican Landscape. Evol Biol 47, 123–132 (2020). https://doi.org/10.1007/s11692-020-09498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-020-09498-7

Keywords

Navigation