Macroevolution of Toothed Whales Exceptional Relative Brain Size

Abstract

Toothed whales (Odontoceti, Cetacea) are well-known for their ability to produce complex vocalizations, to use tools, to possess self-recognition, and for their extreme behavioural plasticity. The toothed whale intelligence is said to compete with that of primates, so does their extremely large brain to body size ratio. Common explanations for the acquisition of such large brains over the evolutionary time (encephalization) in toothed whales range from their demanding, complex social lives, to their feeding habits, to echolocation. Yet, several studies found no macroevolutionary trend in Odontoceti encephalization, which casts doubts on its selective advantage. We applied a recently developed phylogenetic comparative method to study macroevolutionary trends in relative brain size (RBS) and brain size evolutionary rates in cetaceans, comparing toothed whales to the other cetaceans and contrasting groups of species as ascribed to different feeding categories. We found that cetaceans as a whole followed a trend for increased encephalization over time, starting from small-brained archaeocete ancestors. Toothed whales do not show this same trend in RBS but have possessed larger RBS than any other cetacean ever since the beginning of their existence. The rate of RBS evolution in Odontoceti is significantly slower than in other Cetacea and slower than the rate of Odontoceti body size evolution. These results suggest that toothed whales’ history is characterized by high and conservative relative encephalization. Feeding lifestyle does not explain these patterns, while the appearance of echolocation within stem group Odontoceti remains a viable candidate for them.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Data Availability

All data generated or analysed during this study are included in this published article and its Supplementary Information files.

References

  1. Aiello, L. C., & Wells, J. C. (2002). Energetics and the evolution of the genus Homo. Annual Review of Anthropology, 31(1), 323–338. https://doi.org/10.1146/annurev.anthro.31.040402.085403.

    Article  Google Scholar 

  2. Berta, A., Lanzetti, A., Ekdale, E. G., & Deméré, T. A. (2016). From teeth to baleen and raptorial to bulk filter feeding in mysticete cetaceans: The role of paleontological, genetic, and geochemical data in feeding evolution and ecology. Integrative and Comparative Biology, 56(6), 1271–1284. https://doi.org/10.1093/icb/icw128.

    Article  PubMed  Google Scholar 

  3. Berta, A., Sumach, J. L., & Kovacs, K. M. (2007). Marine mammals: Evolutionary biology (second edition). Polar Research. https://doi.org/10.3402/polar.v26i1.6210.

    Article  Google Scholar 

  4. Bianucci, G., & Landini, W. (2002). A new short-rostrum odontocete (Mammalia: Cetacea) from the Middle Miocene of the eastern Netherlands. Beaufortia, 52(11), 187–196.

    Google Scholar 

  5. Cancho, R. F. I., & Lusseau, D. (2006). Long-term correlations in the surface behavior of dolphins. Europhysics Letters, 74(6), 1095–1101. https://doi.org/10.1209/epl/i2005-10596-9.

    Article  CAS  Google Scholar 

  6. Castiglione, S., Serio, C., Mondanaro, A., Di Febbraro, M., Profico, A., Girardi, G., et al. (2019). Simultaneous detection of macroevolutionary patterns in phenotypic means and rate of change with and within phylogenetic trees including extinct species. PLoS ONE, 14(1), e0210101. https://doi.org/10.1371/journal.pone.0210101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Castiglione, S., Tesone, G., Piccolo, M., Melchionna, M., Mondanaro, A., Serio, C., et al. (2018). A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods in Ecology and Evolution, 62, 181. https://doi.org/10.1111/2041-210X.12954.

    Article  Google Scholar 

  8. Churchill, M., Geisler, J. H., Beatty, B. L., & Goswami, A. (2018). Evolution of cranial telescoping in echolocating whales (Cetacea: Odontoceti). Evolution, 72(5), 1092–1108. https://doi.org/10.1111/evo.13480.

    Article  PubMed  Google Scholar 

  9. Clapham, P. J. (1996). The social and reproductive biology of Humpback Whales: An ecological perspective. Mammal Review, 26(1), 27–49. https://doi.org/10.1111/j.1365-2907.1996.tb00145.x.

    Article  Google Scholar 

  10. Clementz, M. T., Goswami, A., Gingerich, P. D., & Koch, P. L. (2006). Isotopic records from early whales and sea cows: Contrasting patterns of ecological transition. Journal of Vertebrate Paleontology, 26(2), 355–370. https://doi.org/10.1671/0272-4634(2006)26[355:IRFEWA]2.0.CO;2.

    Article  Google Scholar 

  11. Connor, R. C. (2007). Dolphin social intelligence: Complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 587–602. https://doi.org/10.1098/rstb.2006.1997.

    Article  Google Scholar 

  12. DeCasien, A. R., Williams, S. A., & Higham, J. P. (2017). Primate brain size is predicted by diet but not sociality. Nature Ecology and Evolution, 1(5), 0112. https://doi.org/10.1038/s41559-017-0112.

    Article  Google Scholar 

  13. Eisenberg, J. F., & Wilson, D. E. (1978). Relative brain size and feeding strategies in the chiroptera. Evolution, 32(4), 740–751. https://doi.org/10.1111/j.1558-5646.1978.tb04627.x.

    Article  PubMed  Google Scholar 

  14. Freckleton, R. P. (2002). On the misuse of residuals in ecology: Regression of residuals vs. multiple regression. Journal of Animal Ecology, 71(3), 542–545. https://doi.org/10.1046/j.1365-2656.2002.00618.x.

    Article  Google Scholar 

  15. Freckleton, R. P. (2009). The seven deadly sins of comparative analysis. Journal of Evolutionary Biology, 22(7), 1367–1375. https://doi.org/10.1111/j.1420-9101.2009.01757.x.

    Article  PubMed  CAS  Google Scholar 

  16. Fordyce, R. E. (1992). Cetacean evolution and Eocene/Oligocene environments. In D. R. Prothero & W. A. Berggren (Eds.), Eocene–Oligocene climatic and biotic evolution (pp. 368–381). Princeton, NJ: Princeton University Press. https://doi.org/10.1515/9781400862924.368.

    Google Scholar 

  17. Geisler, J. H., Colbert, M. W., & Carew, J. L. (2014). A new fossil species supports an early origin for toothed whale echolocation. Nature, 508(7496), 383.

    Article  CAS  Google Scholar 

  18. Gingerich, P. D. (2015). body weight and relative brain size (encephalization) in Eocene Archaeoceti (Cetacea). Journal of Mammalian Evolution, 23(1), 17–31. https://doi.org/10.1007/s10914-015-9304-y.

    Article  Google Scholar 

  19. Gittleman, J. L. (1986). Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy, 67(1), 23–36. https://doi.org/10.2307/1380998.

    Article  Google Scholar 

  20. Harvey, P. H., & Pagel, M. D. (1988). The allometric approach to species differences in brain size. Human Evolution, 3(6), 461–472. https://doi.org/10.1007/BF02436332.

    Article  Google Scholar 

  21. Herculano-Houzel, S., Catania, K., Manger, P. R., & Kaas, J. H. (2015). Mammalian brains are made of these: A dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain, Behavior and Evolution, 86(3–4), 145–163. https://doi.org/10.1159/000437413.

    Article  PubMed  Google Scholar 

  22. Herman, L. M., Matus, D. S., Herman, E. Y. K., Ivancic, M., & Pack, A. A. (2001). The bottlenosed dolphin’s (Tursiops truncatus) understanding of gestures as symbolic representations of its body parts. Animal Learning and Behavior, 29(3), 250–264. https://doi.org/10.3758/BF03192891.

    Article  Google Scholar 

  23. Ichishima, H., Barnes, L. G., Fordyce, R. E., Kimura, M., & Bohaska, D. J. (1994). A review of kentriodontine dolphins (Cetacea, Delphinoidea, Kentriodontidae): Systematics and biogeography. The Island Arc, 3(4), 486–492. https://doi.org/10.1111/j.1440-1738.1994.tb00127.x.

    Article  Google Scholar 

  24. Jerison, H. J. (1985). Animal intelligence as encephalization. Philosophical Transactions of the Royal Society B: Biological Sciences, 308(1135), 21–35. https://doi.org/10.1098/rstb.1985.0007.

    Article  CAS  Google Scholar 

  25. Johnston, C., & Berta, A. (2010). Comparative anatomy and evolutionary history of suction feeding in cetaceans. Marine Mammal Science, 27(3), 493–513. https://doi.org/10.1111/j.1748-7692.2010.00420.x.

    Article  Google Scholar 

  26. Kratsch, C., & McHardy, A. C. (2014). RidgeRace: Ridge regression for continuous ancestral character estimation on phylogenetic trees. Bioinformatics, 30(17), i527–i533. https://doi.org/10.1093/bioinformatics/btu477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Krützen, M., Mann, J., Heithaus, M. R., Connor, R. C., Bejder, L., & Sherwin, W. B. (2005). Cultural transmission of tool use in bottlenose dolphins. Proceedings of the National Academy of Sciences of USA, 102(25), 8939–8943. https://doi.org/10.1073/pnas.0500232102.

    Article  CAS  Google Scholar 

  28. Lenth, R. (2018). Emmeans: Estimated marginal means, aka least-squares means. R package version, 1(1).

  29. Lusseau, D. (2006). Why do dolphins jump? Interpreting the behavioural repertoire of bottlenose dolphins (Tursiops sp.) in Doubtful Sound, New Zealand. Behavioural Processes, 73(3), 257–265. https://doi.org/10.1016/j.beproc.2006.06.006.

    Article  PubMed  Google Scholar 

  30. Mace, G. M., Harvey, P. H., & Clutton-Brock, T. H. (2009). Brain size and ecology in small mammals. Journal of Zoology, 193(3), 333–354. https://doi.org/10.1111/j.1469-7998.1981.tb03449.x.

    Article  Google Scholar 

  31. Manger, P. R. (2013). Questioning the interpretations of behavioral observations of cetaceans: Is there really support for a special intellectual status for this mammalian order? Neuroscience, 250, 664–696. https://doi.org/10.1016/j.neuroscience.2013.07.041.

    Article  PubMed  CAS  Google Scholar 

  32. Manger, P. R. (2006). An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biological Reviews, 81(2), 293–338. https://doi.org/10.1017/S1464793106007019.

    Article  PubMed  Google Scholar 

  33. Marino, L., Connor, R. C., Fordyce, R. E., Herman, L. M., Hof, P. R., Lefebvre, L., et al. (2007). Cetaceans have complex brains for complex cognition. PLoS Biology, 5(5), e139. https://doi.org/10.1371/journal.pbio.0050139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Marino, L. (2004). Dolphin cognition. Current Biology, 14(21), R910–R911. https://doi.org/10.1016/j.cub.2004.10.010.

    Article  PubMed  CAS  Google Scholar 

  35. Marino, L., McShea, D. W., & Uhen, M. D. (2004). Origin and evolution of large brains in toothed whales. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 281(2), 1247–1255. https://doi.org/10.1002/ar.a.20128.

    Article  Google Scholar 

  36. Marx, F. G., & Fordyce, R. E. (2015). Baleen boom and bust: A synthesis of mysticete phylogeny, diversity and disparity. Open Science, 2(4), 140434. https://doi.org/10.1098/rsos.140434.

    Article  Google Scholar 

  37. May-Collado, L. J., Agnarsson, I., & Wartzok, D. (2007). Phylogenetic review of tonal sound production in whales in relation to sociality. BMC Evolutionary Biology, 7(1), 136. https://doi.org/10.1186/1471-2148-7-136.

    Article  PubMed  PubMed Central  Google Scholar 

  38. McCurry, M. R., Fitzgerald, E. M. G., Evans, A. R., Adams, J. W., & McHenry, C. R. (2017). Skull shape reflects prey size niche in toothed whales. Biological Journal of the Linnean Society, 121(4), 936–946. https://doi.org/10.1093/biolinnean/blx032.

    Article  Google Scholar 

  39. McGowen, M. R., Gatesy, J., & Wildman, D. E. (2014). Molecular evolution tracks macroevolutionary transitions in Cetacea. Trends in Ecology and Evolution, 29(6), 336–346. https://doi.org/10.1016/j.tree.2014.04.001.

    Article  PubMed  Google Scholar 

  40. Milinkovitch, M. C. (1995). Molecular phylogeny of cetaceans prompts revision of morphological transformations. Trends in Ecology and Evolution, 10(8), 328–334. https://doi.org/10.1016/S0169-5347(00)89120-X.

    Article  PubMed  CAS  Google Scholar 

  41. Montgomery, S. H., Mundy, N. I., & Barton, R. A. (2016). Brain evolution and development: Adaptation, allometry and constraint. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2016.0433.

    Article  PubMed  Google Scholar 

  42. Montgomery, S. H., Geisler, J. H., McGowen, M. R., Fox, C., Marino, L., & Gatesy, J. (2013). The evolutionary history of cetacean brain and body size. Evolution, 67(11), 3339–3353. https://doi.org/10.1111/evo.12197.

    Article  PubMed  Google Scholar 

  43. Mortensen, H. S., Pakkenberg, B., Dam, M., Dietz, R., Sonne, C., Mikkelsen, B., et al. (2014). Quantitative relationships in delphinid neocortex. Frontiers in Neuroanatomy, 8(46), 301. https://doi.org/10.3389/fnana.2014.00132.

    Article  Google Scholar 

  44. Navarrete, A. F., Blezer, E. L., Pagnotta, M., de Viet, E. S., Todorov, O. S., Lindenfors, P., et al. (2018). Primate brain anatomy: New volumetric MRI measurements for neuroanatomical studies. Brain, Behavior and Evolution, 91(2), 109–117. https://doi.org/10.1159/000488136.

    Article  PubMed  Google Scholar 

  45. Park, T., Fitzgerald, E. M. G., & Evans, A. R. (2016). Ultrasonic hearing and echolocation in the earliest toothed whales. Biology Letters. https://doi.org/10.1098/rsbl.2016.0060.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Perea, G., Navarrete, M., & Araque, A. (2009). Tripartite synapses: Astrocytes process and control synaptic information. Trends in Neurosciences, 32(8), 421–431. https://doi.org/10.1016/j.tins.2009.05.001.

    Article  PubMed  CAS  Google Scholar 

  47. Raia, P., Castiglione, S., Serio, C., Mondanaro, A., Melchionna, M., Di Febbraro, M., et al. (2019). RRphylo: Phylogenetic ridge regression methods for comparative studies. R package version 2.1.0. https://github.com/pasraia/RRphylo.

  48. Reidenberg, J. S., & Laitman, J. T. (2004). Anatomy of infrasonic communication in baleen whales: Divergent mechanisms of sound generation in mysticetes and odontocetes. The Journal of the Acoustical Society of America, 115(5), 2556–2556. https://doi.org/10.1121/1.4783866.

    Article  Google Scholar 

  49. Reiss, D., & Marino, L. (2001). Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proceedings of the National Academy of Sciences of USA, 98(10), 5937–5942. https://doi.org/10.1073/pnas.101086398.

    Article  CAS  Google Scholar 

  50. Rendell, L., & Whitehead, H. (2001). Culture in whales and dolphins. Behavioral and Brain Sciences, 24(02), 309–324. https://doi.org/10.1017/S0140525X0100396X.

    Article  PubMed  CAS  Google Scholar 

  51. Ridgway, S. H., Carlin, K. P., Van Alstyne, K. R., Hanson, A. C., & Tarpley, R. J. (2016). Comparison of dolphins’ body and brain measurements with four other groups of cetaceans reveals great diversity. Brain, Behavior and Evolution, 88(3–4), 235–257. https://doi.org/10.1159/000454797.

    Article  PubMed  Google Scholar 

  52. Shultz, S., & Dunbar, R. (2010). Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proceedings of the National Academy of Sciences of USA, 107(50), 21582–21586. https://doi.org/10.1073/pnas.1005246107.

    Article  Google Scholar 

  53. Slater, G. J., Price, S. A., Santini, F., & Alfaro, M. E. (2010). Diversity versus disparity and the radiation of modern cetaceans. Proceedings. Biological Sciences/The Royal Society, 277(1697), 3097–3104. https://doi.org/10.1098/rspb.2010.0408.

    Article  Google Scholar 

  54. Steeman, M. E., Hebsgaard, M. B., Fordyce, R. E., Ho, S. Y., Rabosky, D. L., Nielsen, R., et al. (2009). Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology, 58(6), 573–585.…

    Article  Google Scholar 

  55. Thewissen, J. G. M., Cooper, L. N., Clementz, M. T., Bajpai, S., & Tiwari, B. N. (2007). Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature, 450(7173), 1190–1194. https://doi.org/10.1038/nature06343.

    Article  PubMed  CAS  Google Scholar 

  56. Uhen, M. D. (2004). Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): An Archaeocete from the Middle to Late Eocene of Egypt. Papers on Paleontology, 34, 1–222.

    Google Scholar 

  57. Weisbecker, V., Blomberg, S., Goldizen, A. W., Brown, M., & Fisher, D. (2015). The evolution of relative brain size in marsupials is energetically constrained but not driven by behavioral complexity. Brain, Behavior and Evolution, 85(2), 125–135. https://doi.org/10.1159/000377666.

    Article  PubMed  Google Scholar 

  58. Whiten, A. (2001). Imitation and cultural transmission in apes and cetaceans. Behavioral and Brain Sciences, 24(02), 359–360. https://doi.org/10.1017/S0140525X01603960.

    Article  Google Scholar 

  59. Wright, A., Scadeng, M., Stec, D., Dubowitz, R., Ridgway, S., & Leger, J. S. (2017). Neuroanatomy of the killer whale (Orcinus orca): A magnetic resonance imaging investigation of structure with insights on function and evolution. Brain Structure and Function, 222(1), 417–436. https://doi.org/10.1007/s00429-016-1225-x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Francesco Carotenuto for critical comments on an earlier version of the manuscript. Phil Gingerich provided some crucial data on extinct cetaceans’ brain mass estimates.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvia Castiglione.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serio, C., Castiglione, S., Tesone, G. et al. Macroevolution of Toothed Whales Exceptional Relative Brain Size. Evol Biol 46, 332–342 (2019). https://doi.org/10.1007/s11692-019-09485-7

Download citation

Keywords

  • Encephalization
  • Relative brain size
  • Cetaceans
  • Odontoceti
  • Mysticeti