Abstract
The development of techniques for the acquisition of high-resolution 3D images, such as computed tomography and magnetic resonance imaging, has opened new avenues to the study of complex morphologies. Detailed descriptions of internal and external traits can be now obtained, allowing the intensive sampling of surface points. In this paper, we introduce a morphometric and statistical framework, grounded on Procrustes and Procrustes-like techniques as well as standard spatial statistics, to explicitly describe and incorporate the spatial pattern of these surface points into the analyses. We exemplified this approach by analyzing ontogenetic changes in a sample of human brain endocasts and inter-specific differences between primate skulls. An intensive sampling of points on 3D surfaces was performed by automatic techniques and the morphometric variation among specimens was measured by the residuals obtained after the alignment of points. Our results showed that shape changes in both examples are spatially structured. Different results were attained by using methods that incorporate or not the spatial structure in the evaluation of the effect of specific biological factors on shape variation. Particularly, these analyses indicated that the effect of biological factors acting at local scales can be confounded with more systemic factors (by example, the effect of the diet on the facial skeleton) if the spatial structure is not taken into account. Overall, our results suggest that the intensive description of shape differences among structures using densely sampled points on 3D surfaces combined with spatial statistical methods can be used to explore problems not widely addressed in morphological studies.






References
Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: Geometric morphometrics in the 21st century. Hystrix, 24, 7–14. https://doi.org/10.4404/hystrix-24.1-6283.
Barbujani, G. (2000). Geographic patterns: How to identify them and why. Human Biology, 72, 133–153.
Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256. https://doi.org/10.1109/34.121791.
Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F. L. V. B., Akre, T. S. B., Albaladejo, R. G., Albuquerque, F. S., et al. (2009). Coefficients ships in geographical ecology: An empirical evaluation of spatial and non-spatial regression. Ecography, 32, 1–12. https://doi.org/10.1111/j.1600-0587.2009.05717.x.
Bookstein, F. L. (1997). Landmark methods for forms without landmarks: Localizing group differences in outline shape. Medical Image Analysis, 1, 225–243. https://doi.org/10.1016/S1361-8415(97)85012-8.
Bookstein, F. L. (2017). A method of factor analysis for shape coordinates. American Journal of Physical Anthropology, 164(2), 221–245. https://doi.org/10.1002/ajpa.23277.
Boyer, D. M., Puente, J., Gladman, J. T., Glynn, C., Mukherjee, S., Yapuncich, G. S., et al. (2015). A new fully automated approach for aligning and comparing shapes. The Anatomical Record, 298, 249–276. https://doi.org/10.1002/ar.23084.
Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36(1), 44–50. https://doi.org/10.1093/icb/36.1.44.
Cignoni, P., Rocchini, C., & Scopigno, R. (1998). Metro: Measuring error on simplified surfaces. Computer Graphics Forum, 17(2), 167–174. https://doi.org/10.1111/1467-8659.00236.
Davies, T., Rahman, I. A., Lautenschlager, S., Cunningham, J. A., Asher, R. J., Barrett, P. M., et al. (2017). Open data and digital morphology. Proceedings of the Royal Society B., 284, 20170194. https://doi.org/10.1098/rspb.2017.0194.
Diniz-Filho, J. A. F., de Sant’Ana, C. E. R., & Bini, L. M. (1998). An eigenvector method for estimating phylogenetic inertia. Evolution, 52(5), 1247–1262. https://doi.org/10.1111/j.1558-5646.1998.tb02006.x.
Diniz-Filho, J. A. F., Nabout, J. C., Campos Telles, M. P., Soares, T. N., & Rangel, T. F. L. V. B. (2009). A review of techniques for spatial modeling in geographical, conservation and landscape genetics. Genetics and Molecular Biology, 32, 203–211. https://doi.org/10.1590/S1415-47572009000200001.
Dormann, C. F., McPherson, J., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., et al. (2007). Methods to account for spatial autocorrelation in the analysis of distributional species data: A review. Ecography, 30, 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x.
Durrleman, S., Pennec, X., Trouvé, A., Ayache, N., & Braga, J. (2012). Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. Journal of Human Evolution, 62(1), 74–88. https://doi.org/10.1016/j.jhevol.2011.10.004.
Fortin, M. J., & Dale, M. R. T. (2005). Spatial analysis: A guide for ecologists. Cambridge: Cambridge University Press.
Gao, T., Yapuncich, G. S., Daubechies, I., Mukherjee, S., & Boyer, D. M. (2018). Development and assessment of fully automated and globally transitive geometric morphometric methods, with application to a biological comparative dataset with high interspecific variation. The Anatomical Record, 301, 636–658. https://doi.org/10.1002/ar.23700.
Gonzalez, P. N., Barbeito-Andrés, J., D’Addona, L. A., Bernal, V., & Perez, S. I. (2016). Performance of semi and fully automated approaches for registration of 3D surface coordinates in geometric morphometric studies. American Journal of Physical Anthropology, 160, 169–178. https://doi.org/10.1002/ajpa.22934.
Gower, J. C. (1971). Statistical methods of comparing different multivariate analyses of the same data. In F. R. Hodson, D. G. Kendall, & P. Tautu (Eds.), Mathematics in the archaeological and historical sciences (pp. 138–149). Edinburgh: Edinburgh University Press.
Gunz, P., & Mitteroecker, P. (2013). Semilandmarks: A method for quantifying curves and surfaces. Hystrix, 24, 103–109. https://doi.org/10.4404/hystrix-24.1-6292.
Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 73–98). New York: Kluwer Academic/Plenum Publishers.
Gunz, P., Neubauer, S., Golovanova, L., Doronichev, V., Maureille, B., & Hublin, J. J. (2012). A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. Journal of Human Evolution, 62(2), 300–313. https://doi.org/10.1016/j.jhevol.2011.11.013.
Hall, B. K. (2003). Unlocking the black box between genotype and phenotype: Cell condensations as morphogenetic (modular) units. Biology and Philosophy, 18, 219–247. https://doi.org/10.1023/A:1023984018531.
Hallgrímsson, B., & Lieberman, D. E. (2008). Mouse models and the evolutionary developmental biology of the skull. Integrative and Comparative Biology, 48(3), 373–384.
Huttegger, S. M., & Mitteroecker, P. (2011). Invariance and meaningfulness in phenotype spaces. Evolutionary Biology, 38(3), 335–351. https://doi.org/10.1007/s11692-011-9123-x.
Klingenberg, C. P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular ecology resources, 11(2), 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x.
Legendre, P. (1993). Spatial autocorrelation: Trouble or new paradigm? Ecology, 74, 1659–1673. https://doi.org/10.2307/1939924.
Legendre, P., & Legendre, L. (1998). Numerical ecology, Second (English ed.). Amsterdam: Elsevier.
Lieberman, D. E. (2011). Epigenetic integration, complexity, and evolvability of the head: Rethinking the functional matrix hypothesis. In B. Hallgrímsson & B. K. Hall (Eds.), Epigenetics: Linking genotype and phenotype in development and evolution (pp. 271–289). California: University of California Press.
Márquez, E. J., Cabeen, R., Woods, R. P., & Houle, D. (2012). The measurement of local variation in shape. Evolutionary Biology, 39, 419–439. https://doi.org/10.1007/s11692-012-9159-6.
MeshLab (2014). Visual Computing Lab—ISTI—CNR http://meshlab.sourceforge.net/.
Mitteroecker, P. (2009). The developmental basis of variational modularity: Insights from quantitative genetics, morphometrics, and developmental biology. Evolutionary Biology, 36, 377–385. https://doi.org/10.1007/s11692-012-9210-7.
Mitteroecker, P., & Bookstein, F. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56(5), 818–836. https://doi.org/10.1080/10635150701648029.
Mitteroecker, P., & Bookstein, F. (2008). The evolutionary role of modularity and integration in the hominoid cranium. Evolution, 62, 943–958. https://doi.org/10.1111/j.1558-5646.2008.00321.x.
Mitteroecker, P., & Gunz, P. (2009) Advances in geometric morphometrics. Evolutionary Biology, 36, 235–247.
Parker, J. (2011). Morphogens, nutrients, and the basis of organ scaling. Evolution & Development, 13(3), 304–314. https://doi.org/10.1111/j.1525-142X.2011.00481.x.
Perez, S. I., Diniz-Filho, J. A. F., Bernal, V., & Gonzalez, P. N. (2010a). Alternatives to partial mantel test in the study the environmental factors shaping the human morphological variation. Journal of Human Evolution, 59, 689–703. https://doi.org/10.1016/j.jhevol.2010.07.019.
Perez, S. I., Diniz-Filho, J. A. F., Bernal, V., & Gonzalez, P. N. (2010b). Spatial regression techniques for inter-population data: Studying the relationships between morphological and ecological variation. Journal of Evolutionary Biology, 23, 237–248. https://doi.org/10.1111/j.1420-9101.2009.01905.x.
Pomidor, B. J., Makedonska, J., & Slice, D. E. (2016). A landmark-free method for three-dimensional shape analysis. PLoS ONE, 11(3), e0150368. https://doi.org/10.1371/journal.pone.0150368.
R Development Core Team. (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Rangel, T. F., Diniz-Filho, J. A. F., & Bini, L. M. (2010). SAM: a comprehensive application for spatial analysis in macroecology. Ecography, 33(1), 46–50. https://doi.org/10.1111/j.1600-0587.2009.06299.x.
Revell, L. J. (2009). Size-correction and principal components for interspecific comparative studies. Evolution, 63(12), 3258–3268. https://doi.org/10.1111/j.1558-5646.2009.00804.x.
Rohlf, F. J. (1990). Rotational fit (Procrustes) methods. In F. J. Rohlf & F. L. Bookstein (Eds.), Proceedings Michigan morphometrics workshop. Special publication no. 2, Museum of Zoology (pp. 227–236). Michigan: University of Michigan.
Rohlf, F. J. (1993). Relative warps analysis and an example of its application to mosquito wings. In L. F. Marcus, E. Bello, & A. García-Valdecasas (Eds.), Contributions to morphometrics (pp. 132–159). Madrid: Monografías del Museo Nacional de Ciencias Naturales.
Rohlf, F. J. (2001). Comparative methods for the analysis of continuous variables: Geometric interpretations. Evolution, 55, 2143–2160.
Rohlf, F. J. (2006). A comment on phylogenetic correction. Evolution, 60, 1509–1515.
Rohlf, F. J., & Slice, D. E. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.
Shapiro, A., & Richstsmeier, J. T. (1997). Brief communication: A sample of pediatric skulls available for study. American Journal of Physical Anthropology, 103, 415–416. https://doi.org/10.1002/(SICI)1096-8644(199707)103:3%3c415:AID-AJPA11%3e3.0.CO;2-3.
Sokal, R. R., & Oden, N. L. (1978). Spatial autocorrelation in biology: 1. Methodology. Biological Journal of the Linnean Society, 10, 199–228. https://doi.org/10.1111/j.1095-8312.1978.tb00013.x.
Tolkoff, M. R., Alfaro, M. E., Baele, G., Lemey, P., & Suchard, M. A. (2017). Phylogenetic factor analysis. Systematic Biology, 67(3), 384–399. https://doi.org/10.1093/sysbio/syx066.
Watanabe, A. (2018). How many landmarks are enough to characterize shape and size variation? PLoS ONE, 13(6), 198–341. https://doi.org/10.1371/journal.pone.0198341.
Acknowledgements
This study was supported with funds from Universidad Nacional de La Plata (PI 792 and 787), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 0729 and PIP 0603) and Agencia de Promoción Científica y Tecnológica (2014–2134 and 2014–1810). We thank Philipp Mitteroecker for his comments that have helped to improve and clarify the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Gonzalez, P.N., Bonfili, N., Vallejo Azar, M.N. et al. Description and Analysis of Spatial Patterns in Geometric Morphometric Data. Evol Biol 46, 260–270 (2019). https://doi.org/10.1007/s11692-019-09479-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11692-019-09479-5