Skip to main content

What is It Like to be a Crab? A Complex Network Analysis of Eucaridan Evolution

Abstract

Eucaridan evolution involved a process starting from a body organization characterized by an elongate and cylindrical cephalothorax, a well-developed abdomen composed of swimming appendages, ending in a tail fan formed by flattened uropods and a telson. This process would lead, ultimately, to a body organization characterized by a shortened and depressed cephalothorax, and a reduced and ventrally folded abdomen. This ultimate process is typically known as carcinization, and is commonly defined as the process of becoming a crab. In this work, the evolution of the superorder Eucarida was studied using complex networks. A new definition of crab and carcinization are given based on the results obtained. A crab is a topological structural closure that determines the formation of a triadic central core. The evolution of the crab implied the formation of a triadic structure with high closeness centrality, formed by the cephalon, the fused thoracomere 1–4 and the carapace, which represented a highly stable hierarchical core deeply buried or enclosed in the topological structure of the network, responsible for the generation of a highly integrated and robust topology. Under this new definition, the representative of the infraorder Anomura used in this work, which is commonly considered as a crab, is not. This network seemed to be characterized by the presence of a quasi-dyadic structure, formed by the cephalon and the carapace, which was not sufficient for generating the topological closure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Agliari, E., & Tavani, F. (2017). The exact Laplacian spectrum for the Dyson hierarchical network. Scientific Reports, 7(39), 962.

    Google Scholar 

  • Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378–382.

    CAS  PubMed  Article  Google Scholar 

  • Balaban, A., & Balaban, T.-S. (1991). New vertex invariants and topological indices of chemical graphs based on information on distances. Journal of Mathematical Chemistry, 8(1), 383–397.

    CAS  Article  Google Scholar 

  • Balaban, A. T. (1982). Highly discriminating distance-based topological index. Chemical Physics Letters, 89(5), 399–404.

    CAS  Article  Google Scholar 

  • Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. In Proceedings of the third international ICWSM conference (Vol. 8, pp. 361–362).

  • Berkeley, A. A. (1928). The musculature of Pandalus danae Stimpson. Transactions of the Royal Canadian Institute, 16(36), 181–231.

    Google Scholar 

  • Bertz, S. H. (1981). The first general index of molecular complexity. Journal of the American Chemical Society, 103(12), 3599–3601.

    CAS  Article  Google Scholar 

  • Blondel, V., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics Theory and Experiment, 2008(10), 10008.

    Article  Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4), 175–308.

    Article  Google Scholar 

  • Bonchev, D. (1983). Information theoretic indices for characterization of chemical structures. Letchworth: Research Studies Press.

    Google Scholar 

  • Bonchev, D., Mekenyan, O., & Trinajstić, N. (1981). Isomer discrimination by topological information approach. Journal of Computational Chemistry, 2(2), 127–148.

    CAS  Article  Google Scholar 

  • Bonchev, D., & Rouvray, D. (2005). Complexity in chemistry, biology, and ecology. New York: Springer.

    Book  Google Scholar 

  • Bonchev, D., & Trinajstić, N. (1977). Information theory, distance matrix, and molecular branching. The Journal of Chemical Physics, 67(10), 4517–4533.

    CAS  Article  Google Scholar 

  • Borradaile, L. A. (1916). Crustacea. Part II. Porcellanopagurus: An instance of carcinization. British Antarctic (“Terra Nova”) Expedition, 1910. Natural History Report Zoology, 3(3), 111–126.

    Google Scholar 

  • Claussen, J. C. (2007). Offdiagonal complexity: A computationally quick complexity measure for graphs and networks. Physica A: Statistical Mechanics and its Applications, 375(1), 365–373.

    Article  Google Scholar 

  • Cochran, D. M. (1935). The skeletal musculature of the blue crab, Callinectes sapidus Rathbun. Smithsonian Miscellaneous Collections, 92(9), 1–76.

    Google Scholar 

  • Csárdi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5), 1–9.

    Google Scholar 

  • Davie, P. J., Guinot, D., & Ng, P. K. (2015). Anatomy and functional morphology of Brachyura. In P. Castro, P. J. Davie, D. Guinot, F. R. Schram, & C. Vaupel Klein (Eds.), Treatise on zoology—anatomy, taxonomy, biology. The Crustacea (Vol. 9C-1, pp. 11–164). Leiden: Brill.

    Google Scholar 

  • Dehmer, M., Emmert-Streib, F., & Shi, Y. (2017). Quantitative graph theory: A new branch of graph theory and network science. Information Sciences, 418, 575–580.

    Article  Google Scholar 

  • Dixon, C. J., Ahyong, S. T., & Schram, F. R. (2003). A new hypothesis of decapod phylogeny. Crustaceana, 76(8), 935–975.

    Article  Google Scholar 

  • Doyle, J., & Graver, J. (1977). Mean distance in a graph. Discrete Mathematics, 17(2), 147–154.

    Article  Google Scholar 

  • Esteve-Altava, B., Diogo, R., Smith, C., Boughner, J. C., & Rasskin-Gutman, D. (2015). Anatomical networks reveal the musculoskeletal modularity of the human head. Scientific Reports, 5, 8298.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Esteve-Altava, B., Marugán-Lobón, J., Botella, H., Bastir, M., & Rasskin-Gutman, D. (2013b). Grist for Riedl’s mill: A network model perspective on the integration and modularity of the human skull. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 320(8), 489–500.

    Article  Google Scholar 

  • Esteve-Altava, B., Marugán-Lobón, J., Botella, H., & Rasskin-Gutman, D. (2013a). Structural constraints in the evolution of the tetrapod skull complexity: Williston’s law revisited using network models. Evolutionary Biology, 40(2), 209–219.

    Article  Google Scholar 

  • Estrada, E., & Rodriguez-Velazquez, J. (2005). Subgraph centrality in complex networks. Physical Review E, 71(5), 056,103.

    Article  CAS  Google Scholar 

  • Freitag, H. (2012). Revision of the genus Insulamon Ng & Takeda, 1992 (Crustacea: Decapoda: Potamidae) with description of four new species. The Raffles Bulletin of Zoology, 60(1), 37–55.

    Google Scholar 

  • Garm, A. (2004). Mechanical functions of setae from the mouth apparatus of seven species of decapod crustaceans. Journal of Morphology, 260(1), 85–100.

    PubMed  Article  Google Scholar 

  • Garm, A., Hallberg, E., & Høeg, J. T. (2003). Role of maxilla 2 and its setae during feeding in the shrimp Palaemon adspersus (Crustacea: Decapoda). The Biological Bulletin, 204(2), 126–137.

    CAS  PubMed  Article  Google Scholar 

  • Guimera, R., & Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895–900.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gutman, I., & Zhou, B. (2006). Laplacian energy of a graph. Linear Algebra and Its Applications, 414(1), 29–37.

    Article  Google Scholar 

  • Huxley, T. H. (1880). The crayfish: An introduction to the study of zoology. London: Kegan Paul.

    Book  Google Scholar 

  • Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.

    Google Scholar 

  • Kim, J., & Wilhelm, T. (2008). What is a complex graph? Physica A: Statistical Mechanics and Its Applications, 387(11), 2637–2652.

    Article  Google Scholar 

  • Konstantinova, E. V., Skorobogatov, V. A., & Vidyuk, M. V. (2003). Applications of information theory in chemical graph theory. Indian Journal of Chemistry, 42A(6), 1227–1240.

    CAS  Google Scholar 

  • Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198,701.

    CAS  Article  Google Scholar 

  • Latora, V., & Marchiori, M. (2005). Vulnerability and protection of infrastructure networks. Physical Review E, 71(1), 015,103.

    Article  CAS  Google Scholar 

  • Lavalli, K. L., & Factor, J. R. (1992). Functional morphology of the mouthparts of juvenile lobsters, Homarus americanus (Decapoda: Nephropidae), and comparison with the larval stages. Journal of Crustacean Biology, 12(3), 467–510.

    Article  Google Scholar 

  • Lavalli, K. L., & Spanier, E. (2010). Infraorder Palinura Latreille, 1802. In F. R. Schram & C. Vaupel Klein (Eds.), Treatise on zoology—anatomy, taxonomy, biology. The Crustacea (Vol. 9A, pp. 425–532). Leiden: Brill.

    Google Scholar 

  • Lhomme, S. (2015). NetSwan: Network strengths and weaknesses analysis. R Package version 0.1.

  • Ma, A., & Mondragón, R. J. (2015). Rich-cores in networks. PLoS ONE, 10(3), e0119,678.

    Article  CAS  Google Scholar 

  • Maas, A., & Waloszek, D. (2001). Larval development of Euphausia superba Dana, 1852 and a phylogenetic analysis of the Euphausiacea. Hydrobiologia, 448(1), 143–169.

    Article  Google Scholar 

  • Martin, J. W., & Abele, L. G. (1986). Phylogenetic relationships of the genus Aegla (Decapoda: Anomura: Aeglidae), with comments on anomuran phylogeny. Journal of Crustacean Biology, 6(3), 576–616.

    Article  Google Scholar 

  • Martin, J. W., & Abele, L. G. (1988). External morphology of the genus Aegla (Crustacea, Anomura, Aeglidae). Smithsonian Contributions to Zoology, 453, 1–46.

    Article  Google Scholar 

  • Mason, O., & Verwoerd, M. (2007). Graph theory and networks in biology. IET Systems Biology, 1(2), 89–119.

    CAS  PubMed  Article  Google Scholar 

  • McLaughlin, P . A., & Lemaitre, R. (1997). Carcinization in the Anomura—fact or fiction? I. Evidence from adult morphology. Contributions to Zoology, 67(2), 79–123.

    Article  Google Scholar 

  • Mohar, B. (1991). The Laplacian spectrum of graphs. In Y. Alavi, G. Chartrand, O. Oellermann, & A. Schwenk (Eds.), Graph theory, combinatorics, and applications (Vol. 2, pp. 871–898). New York: Wiley.

    Google Scholar 

  • Moraes, J. C., & Bueno, S Ld S. (2015). Description of the newly-hatched juvenile of Aegla perobae (Crustacea: Decapoda: Aeglidae). Zootaxa, 3973(3), 491–510.

    PubMed  Article  Google Scholar 

  • Mowshowitz, A. (1968). Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. The Bulletin of Mathematical Biophysics, 30(1), 175–204.

    CAS  PubMed  Article  Google Scholar 

  • Mueller, L., Kugler, K., Dander, A., Graber, A., & Dehmer, M. (2011). QuACN: An R package for analyzing complex biological networks quantitatively. Bioinformatics, 27(1), 140–141.

    CAS  PubMed  Article  Google Scholar 

  • Mueller, L. A., Schutte, M., Kugler, K. G., & Dehmer, M. (2014). QuACN: Quantitative analyze of complex networks. R Package Version 1.6.

  • Newman, M. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.

    Article  Google Scholar 

  • Newman, M., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026,113.

    CAS  Article  Google Scholar 

  • Nikolić, S., Kovačević, G., Miličević, A., & Trinajstić, N. (2003). The Zagreb indices 30 years after. Croatica Chemica Acta, 76(2), 113–124.

    Google Scholar 

  • Parker, T. J., & Rich J. G. (1893). Observations on the myology of Palinurus edwardsii, Hutton. In: J. J. Fletcher (Ed.), Macleay Memorial Volume (pp. 159–178). Sydney: Linnean Society of New South Wales.

  • R Development Core Team. (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  • Randić, M. (1975). Characterization of molecular branching. Journal of the American Chemical Society, 97(23), 6609–6615.

    Article  Google Scholar 

  • Rashevsky, N. (1955). Life, information theory, and topology. Bulletin of Mathematical Biology, 17(3), 229–235.

    CAS  Google Scholar 

  • Rasskin-Gutman, D., & Buscalioni, A. D. (2001). Theoretical morphology of the archosaur (Reptilia: Diapsida) pelvic girdle. Paleobiology, 27(1), 59–78.

    Article  Google Scholar 

  • Rasskin-Gutman, D., & Esteve-Altava, B. (2014). Connecting the dots: Anatomical network analysis in morphological EvoDevo. Biological Theory, 9(2), 178–193.

    Article  Google Scholar 

  • Ravasz, E., Somera, A. L., Mongru, D., Oltvai, Z., & Barabási, A.-L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297(5586), 1551–1555.

    CAS  PubMed  Article  Google Scholar 

  • Scholtz, G. (2014). Evolution of crabs—history and deconstruction of a prime example of convergence. Contributions to Zoology, 83(2), 87–105.

    Article  Google Scholar 

  • Skorobogatov, V. A., & Dobrynin, A. A. (1988). Metric analysis of graphs. MATCH Communications in Mathematical and in Computer Chemistry, 23, 105–151.

    CAS  Google Scholar 

  • Snodgrass, R. E. (1950). Comparative studies on the jaws of mandibulate arthropods. Smithsonian Miscellaneous Collections, 116(1), 1–85.

    Google Scholar 

  • Spiridonov, V., & Casanova, B. (1852). Order Euphausiacea Dana, 1852. In F. R. Schram & C. Vaupel Klein (Eds.), Treatise on zoology—anatomy, taxonomy, biology. The Crustacea (Vol. 9A, pp. 5–82). Leiden: Brill.

    Google Scholar 

  • Thoma, B. P., Ng, P. K., & Felder, D. L. (2012). Review of the family Platyxanthidae Guinot, 1977 (Crustacea, Decapoda, Brachyura, Eriphioidea), with the description of a new genus and a key to genera and species. Zootaxa, 3498(1), 1–23.

    Article  Google Scholar 

  • Tudge, C. C., Asakura, A., & Ahyong, S. T. (2012). Infraorder Anomura MacLeay, 1838. In F. R. Schram & C. Vaupel Klein (Eds.), Treatise on zoology–anatomy, taxonomy, biology. The Crustacea (Vol. 9B, pp. 221–333). Leiden: Brill.

    Google Scholar 

  • Wahle, R. A., Tshudy, D., Cobb, J. S., Factor, J., & Jaini, M. (2012). Infraorder Astacidea Latreille, 1802 PP: The marine clawed lobsters. In F. R. Schram & C. Vaupel Klein (Eds.), Treatise on zoology—anatomy, taxonomy, biology. The Crustacea (Vol. 9B, pp. 3–108). Leiden: Brill.

    Google Scholar 

  • Watson, C. (2017). brainGraph: graph theory analysis of brain MRI data.

  • Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1), 17–20.

    CAS  PubMed  Article  Google Scholar 

  • Young, J. (1959). Morphology of the white shrimp Penaeus setiferus (Linnaeus 1758). Fishery Bulletin, 145, 1–168.

    Google Scholar 

Download references

Acknowledgements

This work was supported by a postdoctoral fellowship from Fundación Bunge y Born (FByB, Argentina). I would like to thank the academic support from Irina Podgorny (Museo de La Plata, Universidad Nacional de La Plata, Argentina), who made possible my application to the aforementioned fellowship. I would also like to thank the anonymous reviewers of this manuscript for their constructive suggestions which led to an important improvement of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Ostachuk.

Ethics declarations

Competing interests

I declare that I have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ostachuk, A. What is It Like to be a Crab? A Complex Network Analysis of Eucaridan Evolution. Evol Biol 46, 179–206 (2019). https://doi.org/10.1007/s11692-019-09475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-019-09475-9

Keywords

  • Theoretical biology
  • Evo-devo
  • Complexity
  • Network theory