Alvarez, D., & Nicieza, A. G. (2005). Is metabolic rate a reliable predictor of growth and survival of brown trout (Salmo trutta) in the wild? Canadian Journal of Fisheries and Aquatic Sciences, 62, 643–649.
Article
Google Scholar
Auer, S. K., Salin, K., Rudolf, A. M., Anderson, G. J., & Metcalfe, N. B. (2015). The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability. Functional Ecology, 29, 479–486.
Article
Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48.
Article
Google Scholar
Berteaux, D., Thomas, D. W., Bergeron, J. M., & Lapierre, H. (1996). Repeatability of daily field metabolic rate in female meadow voles (Microtus pennsylvanicus). Functional Ecology, 10, 751–759.
Article
Google Scholar
Biro, P. A., & Stamps, J. A. (2010). Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends in Ecology & Evolution, 25, 653–659.
Article
Google Scholar
Bordas, A., Tixierboichard, M., & Merat, P. (1992). Direct and correlated responses to divergent selection for residual food-intake in Rhode Island red laying hens. British Poultry Science, 33, 741–754.
Article
CAS
PubMed
Google Scholar
Burton, T., Killen, S. S., Armstrong, J. D., & Metcalfe, N. B. (2011). What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proceedings of the Royal Society B-Biological Sciences, 278:3465–3473.
Article
Google Scholar
Careau, V., Thomas, D., Humphries, M. M., & Reale, D. (2008). Energy metabolism and animal personality. Oikos, 117, 641–653.
Article
Google Scholar
Careau, V., Thomas, D., Pelletier, F., Turki, L., Landry, F., Garant, D., & Reale, D. (2011). Genetic correlation between resting metabolic rate and exploratory behaviour in deer mice (Peromyscus maniculatus). Journal of Evolutionary Biology, 24, 2153–2163.
Article
CAS
PubMed
Google Scholar
Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution, 42, 958–968.
Article
PubMed
Google Scholar
Dohm, M. R., Hayes, J. P., & Garland, T. (2001). The quantitative genetics of maximal and basal rates of oxygen consumption in mice. Genetics, 159, 267–277.
CAS
PubMed
PubMed Central
Google Scholar
Einum, S. (2014). Ecological modeling of metabolic rates predicts diverging optima across food abundances. American Naturalist, 183, 410–417.
Article
PubMed
Google Scholar
Finstad, A. G., Naesje, T. F., & Forseth, T. (2004). Seasonal variation in the thermal performance of juvenile Atlantic salmon (Salmo salar). Freshwater Biology, 49, 1459–1467.
Article
Google Scholar
Fossen, E. I. F., Pelabon, C., & Einum, S. (2018). An empirical test for a zone of canalization in thermal reaction norms. Journal of Evolutionary Biology, 31, 936–943.
Article
PubMed
Google Scholar
Fossen, E. I. F., Pelabon, C., & Einum, S. (2019). Genetic and environmental effects on the scaling of metabolic rate with body size. Journal of Experimental Biology (in press).
Fyhn, M., Gabrielsen, G. W., Nordoy, E. S., Moe, B., Langseth, I., & Bech, C. (2001). Individual variation in field metabolic rate of kittiwakes (Rissa tridactyla) during the chick-rearing period. Physiological and Biochemical Zoology, 74, 343–355.
Article
CAS
PubMed
Google Scholar
Gebczynski, A. K., & Konarzewski, M. (2009). Locomotor activity of mice divergently selected for basal metabolic rate: a test of hypotheses on the evolution of endothermy. Journal of Evolutionary Biology, 22, 1212–1220.
Article
CAS
PubMed
Google Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293, 2248–2251.
Article
CAS
PubMed
Google Scholar
Glazier, D. S. (1991). Separating the respiration rates of embryos and brooding females of Daphnia magna: implications for the cost of brooding and the allometry of metabolic rate. Limnology and Oceanography, 36, 354–361.
Article
Google Scholar
Hansen, T. F., Pélabon, C., & Houle, D. (2011). Heritability is not evolvability. Evolutionary Biology, 38, 258–277.
Article
Google Scholar
Haupt, A., Thamer, C., Staiger, H., Tschritter, O., Kirchhoff, K., Machicao, F., Haring, H. U., Stefan, N., & Fritsche, A. (2009). Variation in the FTO gene influences food intake but not energy expenditure. Experimental and Clinical Endocrinology & Diabetes, 117, 194–197.
Article
CAS
Google Scholar
Houle, D. (1992). Comparing evolvability and variability of quantitative traits. Genetics, 130, 195–204.
CAS
PubMed
PubMed Central
Google Scholar
Jobling, M. (1981). The influences of feeding on the metabolic rate of fishes—a short review. Journal of Fish Biology, 18, 385–400.
Article
Google Scholar
Jonsson, B., Forseth, T., Jensen, A. J., & Næsje, T. F. (2001). Thermal performance of juvenile Atlantic salmon, Salmo salar L. Functional Ecology, 15, 701–711.
Article
Google Scholar
Kluttgen, B., Dulmer, U., Engels, M., & Ratte, H. T. (1994). Adam, an artificial fresh-water for the culture of Zooplankton. Water Research, 28, 743–746.
Article
Google Scholar
Kooijman, S. A. L. M. (2010). Dynamic energy budget theory for metabolic organisation. Cambridge: Cambridge University Press.
Google Scholar
Ksiazek, A., Konarzewski, M., & Lapo, I. B. (2004). Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice. Physiological and Biochemical Zoology, 77, 890–899.
Article
PubMed
Google Scholar
Marhold, S., & Nagel, A. (1995). The energetics of the common mole rat Cryptomys, a subterranean eusocial rodent from Zambia. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 164, 636–645.
Article
CAS
Google Scholar
McCarthy, I. D. (2000). Temporal repeatability of relative standard metabolic rate in juvenile Atlantic salmon and its relation to life history variation. Journal of Fish Biology, 57, 224–238.
Article
Google Scholar
Metcalfe, N. B. (1991). Competitive ability influences seaward migration age in Atlantic salmon. Canadian Journal of Zoology, 69, 815–817.
Article
Google Scholar
Metcalfe, N. B., Taylor, E. B., & Thorpe, J. E. (1995). Metabolic rate, social status and life-history strategies in Atlantic salmon. Animal Behaviour, 49, 431–436.
Article
Google Scholar
Metcalfe, N. B., Van Leeuwen, T. E., & Killen, S. S. (2016). Does individual variation in metabolic phenotype predict fish behaviour and performance? Journal of Fish Biology, 88, 298–321.
Article
CAS
PubMed
Google Scholar
Millidine, K. J., Armstrong, J. D., & Metcalfe, N. B. (2006). Presence of shelter reduces maintenance metabolism of juvenile salmon. Functional Ecology, 20, 839–845.
Article
Google Scholar
Mrode, R. A., & Kennedy, B. W. (1993). Genetic variation in measures of food efficiency in pigs and their genetic relationships with growth rate and backfat. Animal Production, 56, 225–232.
Article
Google Scholar
Nespolo, R. F., & Franco, M. (2007). Whole-animal metabolic rate is a repeatable trait: a meta-analysis. Journal of Experimental Biology, 210, 3877–3878.
Article
Google Scholar
Nilsson, J. A., Akesson, M., & Nilsson, J. F. (2009). Heritability of resting metabolic rate in a wild population of blue tits. Journal of Evolutionary Biology, 22, 1867–1874.
Article
PubMed
Google Scholar
Norin, T., & Clark, T. D. (2016). Measurement and relevance of maximum metabolic rate in fishes. Journal of Fish Biology, 88, 122–151.
Article
CAS
PubMed
Google Scholar
Peck, M. A., & Moyano, M. (2016). Measuring respiration rates in marine fish larvae: challenges and advances. Journal of Fish Biology, 88, 173–205.
Article
CAS
PubMed
Google Scholar
Poulsen, M., Bot, A. N. M., Nielsen, M. G., & Boomsma, J. J. (2002). Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants. Behavioral Ecology and Sociobiology, 52, 151–157.
Article
Google Scholar
Present, T. M. C., & Conover, D. O. (1992). Physiological basis of latitudinal growth differences in Menidia menidia—variation in consumption or efficiency? Functional Ecology, 6, 23–31.
Article
Google Scholar
R Core Team 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Reid, D., Armstrong, J. D., & Metcalfe, N. B. (2012). The performance advantage of a high resting metabolic rate in juvenile salmon is habitat dependent. Journal of Animal Ecology, 81, 868–875.
Article
PubMed
Google Scholar
Roff, D. A. (1995). The estimation of genetic correlations from phenotypic correlations—a test of cheveruds conjecture. Heredity, 74, 481–490.
Article
Google Scholar
Rønning, B., Jensen, H., Moe, B., & Bech, C. (2007). Basal metabolic rate: heritability and genetic correlations with morphological traits in the zebra finch. Journal of Evolutionary Biology, 20, 1815–1822.
Article
CAS
PubMed
Google Scholar
Sadowska, E. T., Labocha, M. K., Baliga, K., Stanisz, A., Wroblewska, A. K., Jagusiak, W., & Koteja, P. (2005). Genetic correlations between basal and maximum metabolic rates in a wild rodent: Consequences for evolution of endothermy. Evolution, 59, 672–681.
Article
PubMed
Google Scholar
Scantlebury, M., Waterman, J. M., Hillegass, M., Speakman, J. R., & Bennett, N. C. 2007. Energetic costs of parasitism in the Cape ground squirrel Xerus inauris. Proceedings of the Royal Society B-Biological Sciences, 274:2169–2177.
Article
Google Scholar
Sereni, L., & Einum, S. (2015). No evidence for activity adjustment in response to increased density in Daphnia magna. PLoS ONE, 10, e0144759.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steyermark, A. C. (2002). A high standard metabolic rate constrains juvenile growth. Zoology, 105, 147–151.
Article
PubMed
Google Scholar
Tillé, Y., & Matei, A. (2016). Sampling: Survey Sampling. R package version 2.8. https://CRAN.R-project.org/package=sampling. Accessed 26 Feb 2019.
Vezina, F., Speakman, J. R., & Williams, T. D. (2006). Individually variable energy management strategies in relation to energetic costs of egg production. Ecology, 87, 2447–2458.
Article
PubMed
Google Scholar
Yamamoto, T., Ueda, H., & Higashi, S. (1998). Correlation among dominance status, metabolic rate and otolith size in masu salmon. Journal of Fish Biology, 52, 281–290.
Article
Google Scholar
Yashchenko, V., Fossen, E. I., Kielland, ØN., & Einum, S. (2016). Negative relationships between population density and metabolic rates are not general. Journal of Animal Ecology, 85, 1070–1077.
Article
PubMed
Google Scholar
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York: Springer.
Book
Google Scholar