Ecological and Spatial Patterns Associated with Diversification of the Shrub Genus Tetraglochin along Southern-Central Andes (Rosaceae)

Abstract

In addition to the degree of geographical isolation (sympatry, parapatry, allopatry and peripatry), ecology can be an important factor promoting diversification of lineages, both by niche divergence as well as niche conservatism. Tetraglochin is a genus of shrubs with six species distributed along the Southern and Central Andes, from Peru to southern Argentina and central Chile. Although monophyly of the genus as the identity of its species are well established, spatiotemporal framework for its diversification and the potential role of the ecology and geography in the speciation process remain unknown. In the present study we analyzed diversification times and historical biogeography of the genus, and conducted different climatic niche and geographical range comparisons among its species to determine possible patterns associated with speciation. Results support the Pleistocene diversification, early along the Southern Andes and the Patagonian Steppe and subsequently in the Central Andes. Climatic niche divergence did not prove to be a major factor promoting speciation, but rather the phylogenetic niche conservatism. Our analyses also favored the sympatric model of speciation, although patterns from geographical range evolution are difficult to interpret due to the lability on the ancestral distributions, and therefore micro-allopatric or parapatric divergence associated with the glacial-interglacial cycles and climatic oscillations throughout the Quaternary should not be discarded. Other potential factors associated with diversification of Tetraglochin are also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Accessibility

All data generated for this study are available online from Dryad Digital Repository (https://doi.org/10.5061/dryad.sd69mc7), and the electronic supplementary material.

References

  1. Acosta, J. M., Salariato, D. L., & Cialdella, A. M. (2016). Molecular phylogeny and morphological analysis of Tetraglochin (Rosaceae: Rosoideae: Sanguisorbeae) and recognition of the new species T. andina. Systematic Botany, 41(4), 839–850. https://doi.org/10.1600/036364416X693946.

    Article  Google Scholar 

  2. Alexandre, H., Faure, J., Ginzbarg, S., Clark, J., & Joly, S. (2017). Bioclimatic niches are conserved and unrelated to pollination syndromes in Antillean Gesneriaceae. Royal Society Open Science, 4(11), 170293. https://doi.org/10.1098/rsos.170293.

    PubMed  Article  PubMed Central  Google Scholar 

  3. Anacker, B. L., & Strauss, S. Y. (2014). The geography and ecology of plant speciation: Range overlap and niche divergence in sister species. Proceedings of the Royal Society of London B: Biological Sciences, 281(1778), 20132980. https://doi.org/10.1098/rspb.2013.2980.

    Article  Google Scholar 

  4. André, T., Salzman, S., Wendt, T., & Specht, C. D. (2016). Speciation dynamics and biogeography of Neotropical spiral gingers (Costaceae). Molecular phylogenetics and evolution, 103, 55–63. https://doi.org/10.1016/j.ympev.2016.07.008.

    PubMed  Article  Google Scholar 

  5. Antonelli, A., & Sanmartín, I. (2011). Why are there so many plant species in the Neotropics? Taxon, 60(2), 403–414.

    Article  Google Scholar 

  6. Barraclough, T. G., & Vogler, A. P. (2000). Detecting the geographical pattern of speciation from species-level phylogenies. The American Naturalist, 155(4), 419–434. https://doi.org/10.1086/303332.

    Article  PubMed  Google Scholar 

  7. Bivand, R. S., & Lewin-Koh, N. (2017). maptools: Tools for reading and handling spatial objects. R package version 0.8-41. https://CRAN.R-project.org/package=maptools.

  8. Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R (2nd ed.). New York: Springer.

    Google Scholar 

  9. Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Idleman, B., & Zeitler, P. K. (2005). Climatic and ecologic changes during Miocene surface uplift in the southern Patagonian Andes. Earth and Planetary Science Letters, 230, 125–142. https://doi.org/10.1016/j.epsl.2004.11.015.

    CAS  Article  Google Scholar 

  10. Bolnick, D. I., & Fitzpatrick, B. M. (2007). Sympatric speciation: Models and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 38, 459–487. https://doi.org/10.1146/annurev.ecolsys.38.091206.095804.

    Article  Google Scholar 

  11. Bouckaert, R., & Heled, J. (2014). DensiTree 2: Seeing trees through the forest. bioRxiv. https://doi.org/10.1101/012401.

    Article  Google Scholar 

  12. Bowman, A. W., & Azzalini, A. (2014). R package ‘sm’: Nonparametric smoothing methods (version 2.2–5.4). http://www.stats.gla.ac.uk/~adrian/sm.

  13. Broennimann, O., Di Cola, V., & Guisan, A. (2016). ecospat: Spatial Ecology Miscellaneous Methods, R package version 2.1.1. https://CRAN.R721project.org/package=ecospat.

  14. Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., … Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x.

    Article  Google Scholar 

  15. Cabrera, A., & Willink, A. (1973). Biogeografía de América Latina. Washington: Monografías OEA.

    Google Scholar 

  16. Calenge, C. (2006). The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling, 197, 516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017.

    Article  Google Scholar 

  17. Chesser, R. T., & Zink, R. M. (1994). Modes of speciation in birds: A test of Lynch’s method. Evolution, 48(2), 490–497. https://doi.org/10.1111/j.1558-5646.1994.tb01326.x.

    PubMed  Article  Google Scholar 

  18. Cialdella, A. M., & Pometti, C. L. (2017). Taxonomic revision of the genus Tetraglochin (Rosaceae, Rosoideae) and morphometric analysis of its species. Phytotaxa, 296(3), 201–227. https://doi.org/10.11646/phytotaxa.296.3.1.

    Article  Google Scholar 

  19. Cox, S. C., Prys-Jones, R. P., Habel, J. C., Amakobe, B. A., & Day, J. J. (2014). Niche divergence promotes rapid diversification of East African sky island white-eyes (Aves: Zosteropidae). Molecular Ecology, 23(16), 4103–4118. https://doi.org/10.1111/mec.12840.

    PubMed  Article  PubMed Central  Google Scholar 

  20. Coyne, J. A., & Orr, A. H. (2004). Speciation. Massachusetts: Ed. Sunderland, Sinauer Associates, Inc.

    Google Scholar 

  21. Crawford, D. J., Brauner, S., Cosner, M. B., & Stuessy, T. F. (1993). Use of RAPD markers to document the origin of the intergeneric hybrid xMargyracaena skottsbergii (Rosaceae) on the Juan Fernandez Islands. American Journal of Botany, 89–92.

  22. Crisp, M. D., Arroyo, M. T., Cook, L. G., Gandolfo, M. A., Jordan, G. J., McGlone, M. S., … Linder, H. P. (2009). Phylogenetic biome conservatism on a global scale. Nature, 458(7239), 754–756. https://doi.org/10.1038/nature07764.

    CAS  PubMed  Article  Google Scholar 

  23. Crisp, M. D., & Cook, L. G. (2012). Phylogenetic niche conservatism: What are the underlying evolutionary and ecological causes? New Phytologist, 196(3), 681–694. https://doi.org/10.1111/j.1469-8137.2012.04298.x.

    PubMed  Article  Google Scholar 

  24. Culumber, Z. W., & Tobler, M. (2016). Ecological divergence and conservatism: Spatiotemporal patterns of niche evolution in a genus of livebearing fishes (Poeciliidae: Xiphophorus). BMC Evolutionary Biology, 16(1), 44. https://doi.org/10.1186/s12862-016-0593-4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature methods, 9(8), 772–772. https://doi.org/10.1038/nmeth.2109.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Del Río, C. J., Griffin, M., McArthur, J. M., Martínez, S., & Thirlwall, M. F. (2013). Evidence for early Pliocene and late Miocene transgressions in southern Patagonia (Argentina): 87Sr/86Sr ages of the pectinid “Chlamys” actinodes (Sowerby). Journal of South American Earth Sciences, 47, 220–229. https://doi.org/10.1016/j.jsames.2013.08.004.

    CAS  Article  Google Scholar 

  27. Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., … Guisan, A. (2017). Ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774–787. https://doi.org/10.1111/ecog.02671.

    Article  Google Scholar 

  28. Dickinson, T. A., Lo, E., & Talent, N. (2007). Polyploidy, reproductive biology, and Rosaceae: Understanding evolution and making classifications. Plant Systematics and Evolution, 266(1–2), 59–78. https://doi.org/10.1007/s00606-007-0541-2.

    Article  Google Scholar 

  29. Donoghue, M. J. (2008). A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 105(Supplement 1), 11549–11555. https://doi.org/10.1073/pnas.0801962105.

    PubMed  Article  PubMed Central  Google Scholar 

  30. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. https://doi.org/10.1093/molbev/mss075.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Dupin, J., Matzke, N. J., Särkinen, T., Knapp, S., Olmstead, R. G., Bohs, L., & Smith, S. D. (2017). Bayesian estimation of the global biogeographical history of the Solanaceae. Journal of Biogeography, 44(4), 887–899. https://doi.org/10.1111/jbi.12898.

    Article  Google Scholar 

  32. Edelman, D. W. (1975). The Eocene Germer Basin Flora of South-Central Idaho [MS Thesis]. Moscow: University of Idaho.

  33. Encinas, A., Zambrano, P. A., Finger, K. L., Valencia, V., Buatois, L. A., & Duhart, P. (2013). Implications of deep-marine Miocene deposits on the evolution of the north Patagonian Andes. The Journal of Geology, 121, 215–238. https://doi.org/10.1086/669976.

    CAS  Article  Google Scholar 

  34. Evans, M. E., Hearn, D. J., Hahn, W. J., Spangle, J. M., & Venable, D. L. (2005). Climate and life history evolution in evening primroses (Oenothera, Onagraceae): A phylogenetic comparative analysis. Evolution, 59, 1914–1927. https://doi.org/10.1554/04-708.1.

    CAS  PubMed  Article  Google Scholar 

  35. Evans, M. E., Smith, S. A., Flynn, R. S., & Donoghue, M. J. (2009). Climate, niche evolution, and diversification of the “bird-cage” evening primroses (Oenothera, sections Anogra and Kleinia). The American Naturalist, 173(2), 225–240. https://doi.org/10.1086/595757.

    PubMed  Article  Google Scholar 

  36. Fitzpatrick, B. M., Fordyce, J. A., & Gavrilets, S. (2008). What, if anything, is sympatric speciation? Journal of Evolutionary Biology, 21(6), 1452–1459. https://doi.org/10.1111/j.1420-9101.2008.01611.x.

    CAS  PubMed  Article  Google Scholar 

  37. Fitzpatrick, B. M., Fordyce, J. A., & Gavrilets, S. (2009). Pattern, process and geographic modes of speciation. Journal of Evolutionary Biology, 22(11), 2342–2347. https://doi.org/10.1111/j.1420-9101.2009.01833.x.

    CAS  PubMed  Article  Google Scholar 

  38. Fitzpatrick, B. M., & Turelli, M. (2006). The geography of mammalian speciation: Mixed signals from phylogenies and range maps. Evolution, 60(3), 601–615. https://doi.org/10.1554/05-453.1.

    CAS  PubMed  Article  Google Scholar 

  39. Garzione, C. N., Hoke, G. D., Libarkin, J. C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., & Mulch, A. (2008). Rise of the Andes. Science, 320, 1304–1307. https://doi.org/10.1126/science.1148615.

    CAS  PubMed  Article  Google Scholar 

  40. Gehrke, B., Bräuchler, C., Romoleroux, K., Lundberg, M., Heubl, G., & Eriksson, T. (2008). Molecular phylogenetics of Alchemilla, Aphanes and Lachemilla (Rosaceae) inferred from plastid and nuclear intron and spacer DNA sequences, with comments on generic classification. Molecular Phylogenetics and Evolution, 47(3), 1030–1044. https://doi.org/10.1016/j.ympev.2008.03.004.

    CAS  PubMed  Article  Google Scholar 

  41. Gentry, A. H. (1982). Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical Garden, 69(3), 557–593. https://doi.org/10.2307/2399084.

    Article  Google Scholar 

  42. Gereau, R. E. (1993). Rosaceae. In L. Brako & J. L. Zarucchi (Eds.), Catalogue of the flowering plants and gymnosperms of Peru. Monographs in Systematic Botany from the Missouri Botanical Garden (Vol. 45, pp. 1003–1010). Missouri: Missouri Botanical Garden Press.

    Google Scholar 

  43. Givnish, T. J. (2010). Ecology of plant speciation. Taxon, 59(5), 1326–1366.

    Article  Google Scholar 

  44. Graham, A. (2009). The Andes: A geological overview from a biological perspective. Annals of the Missouri Botanical Garden, 96, 371–385. https://doi.org/10.3417/2007146.

    Article  Google Scholar 

  45. Graham, A., Gregory-Wodzicki, K. M., & Wright, K. L. (2001). Studies in Neotropical paleobotany. XV. A Mio-Pliocene palynoflora from the Eastern Cordillera, Bolivia: Implications for the uplift history of the Central Andes. American Journal of Botany, 88, 1545–1557. https://doi.org/10.2307/3558398.

    CAS  PubMed  Article  Google Scholar 

  46. Gregory-Wodzicki, K. M. (2000). Uplift history of the central and northern Andes: A review. Geological Society of America Bulletin 112, 1091–1105. https://doi.org/10.1130/0016-7606(2000)112%3C1091:UHOTCA%3E2.0.CO;2

    Article  Google Scholar 

  47. Grondona, E. (1964). Las especies argentinas del género Acaena (Rosaceae). Darwiniana, 13(2/4), 209–342.

    Google Scholar 

  48. Grondona, E. (1984). Rosaceae. In M. N. Correa (Ed.), Flora Patagónica 8(4b) (pp. 48–88). Buenos Aires: Colección Científica del Instituto Nacional de Tecnología Agropecuaria.

    Google Scholar 

  49. Grossenbacher, D. L., Veloz, S. D., & Sexton, J. P. (2014). Niche and range size patterns suggest that speciation begins in small, ecologically diverged populations in North American monkeyflowers (Mimulus spp.). Evolution, 68(5), 1270–1280. https://doi.org/10.1111/evo.12355.

    PubMed  Article  Google Scholar 

  50. Haffer, J. (1969). Speciation in Amazonian forest birds. Science, 165(3889), 131–137.

    CAS  Article  Google Scholar 

  51. Hazzi, N. A., Moreno, J. S., Ortiz-Movliav, C., & Palacio, R. D. (2018). Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proceedings of the National Academy of Sciences of United States of America, 115(31), 7985–7990. https://doi.org/10.1073/pnas.1803908115.

    CAS  Article  Google Scholar 

  52. Heibl, C., & Calenge, C. (2013). Phyloclim: Integrating phylogenetics and climatic niche modeling. R package version 0.9-4. https://CRAN.R-project.org/package=phyloclim.

  53. Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., & Sykes, M. T. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30, 751–777. https://doi.org/10.1177/0309133306071957.

    Article  Google Scholar 

  54. Heled, J., & Drummond, A. J. (2009). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27(3), 570–580. https://doi.org/10.1093/molbev/msp274.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. Hijmans, R. J. (2016). Raster: Geographic data analysis and modeling. R package version 2.5-8. https://CRAN.R-project.org/package=raster.

  56. Hoorn, C., Wesselingh, F. P., Steege, T., Bermudez, H., Mora, M. A., Sevink, A., … Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931. https://doi.org/10.1126/science.1194585.

    CAS  PubMed  Article  Google Scholar 

  57. Jauregui-lazo, J. A. (2015). Phylogeny and biogeography of Acaena (Rosaceae): Evidence of multiple long-distance dispersal events in the Southern Hemisphere. M.S. thesis. Davis: University of California.

  58. Jezkova, T., & Wiens, J. J. (2018). Testing the role of climate in speciation: New methods and applications to squamate reptiles (lizards and snakes). Molecular Ecology, 27(12), 2754–2769. https://doi.org/10.1111/mec.14717.

    PubMed  Article  Google Scholar 

  59. Jordan, D. S. (1905). The origin of species through isolation. Science, 22(566), 545–562.

    CAS  Article  Google Scholar 

  60. Jordan, T. E., Burns, W. M., Veiga, R., Pangaro, F., Copeland, P., Kelley, S., & Mpodozis, C. (2001). Extension and basin formation in the Southern Andes caused by increased convergence rate: A mid-Cenozoic trigger for the Andes. Tectonics, 20, 308–324. https://doi.org/10.1029/1999TC001181.

    Article  Google Scholar 

  61. Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., … Kessler, M. (2017a). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122. https://doi.org/10.1038/sdata.2017.122.

    PubMed  Article  PubMed Central  Google Scholar 

  62. Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., … Kessler, M. (2017b). Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digital Repository. https://doi.org/10.5061/dryad.kd1d4.

    Article  Google Scholar 

  63. Kerr, M. S. (2004). A phylogenetic and biogeographic analysis of Sanguisorbeae (Rosaceae) with emphasis on the Pleistocene radiation of the high Andean genus Polylepis. Ph.D. thesis. Baltimore: University of Maryland.

  64. Kessler, M. (1995). The genus Polylepis (Rosaceae) in Bolivia. Candollea, 50, 131–171.

    Google Scholar 

  65. Kessler, M., & Schmidt-Lebuhn, A. N. (2006). Taxonomical and distributional notes on Polylepis (Rosaceae). Organisms, Diversity and Evolution, 6, 67–69. https://doi.org/10.1016/j.ode.2005.04.001.

    Article  Google Scholar 

  66. Kiesling, R. (1994). Rosaceae. In R. Kiesling (Ed.), Flora de San Juan, República Argentina (Vol. 1, pp. 250–256). Buenos Aires: Vazquez Mazzini.

    Google Scholar 

  67. Kisel, Y., & Barraclough, T. G. (2010). Speciation has a spatial scale that depends on levels of gene flow. The American Naturalist, 175(3), 316–334. https://doi.org/10.1086/650369.

    PubMed  Article  Google Scholar 

  68. Kolanowska, M., Grochocka, E., & Konowalik, K. (2017). Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives. PeerJ, 5, e3328. https://doi.org/10.7717/peerj.3328.

    PubMed  Article  PubMed Central  Google Scholar 

  69. Kozak, K. H., & Wiens, J. J. (2006). Does niche conservatism promote speciation? A case study in North American salamanders. Evolution, 60(12), 2604–2621. https://doi.org/10.1554/06-334.1.

    PubMed  Article  Google Scholar 

  70. Leier, A., McQuarrie, N., Garzione, C., & Eiler, J. (2013). Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. Earth and Planetary Science Letters, 371, 49–58. https://doi.org/10.1016/j.epsl.2013.04.025.

    CAS  Article  Google Scholar 

  71. Levin, D. A. (2003). Ecological speciation: Lessons from invasive species. Systematic Botany, 28(4), 643–650. https://doi.org/10.1043/02-70.1.

    Article  Google Scholar 

  72. Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x.

    Article  Google Scholar 

  73. Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40, 778–789. https://doi.org/10.1111/jbi.12058.

    Article  Google Scholar 

  74. Losos, J. B., & Glor, R. E. (2003). Phylogenetic comparative methods and the geography of speciation. Trends in Ecology & Evolution, 18(5), 220–227. https://doi.org/10.1016/S0169-5347(03)00037-5.

    Article  Google Scholar 

  75. Luebert, F., Jacobs, P., Hilger, H. H., & Muller, L. A. (2014). Evidence for nonallopatric speciation among closely related sympatric Heliotropium species in the Atacama Desert. Ecology and Evolution, 4(3), 266–275. https://doi.org/10.1002/ece3.929.

    PubMed  Article  Google Scholar 

  76. Luebert, F., & Weigend, M. (2014). Phylogenetic insights into Andean plant diversification. Frontiers in Ecology and Evolution, 2, 27. https://doi.org/10.3389/fevo.2014.00027.

    Article  Google Scholar 

  77. Lynch, J. D. (1989). The gauge of speciation: On the frequency of modes of speciation. In D. Otte & J. A. Endler (Eds.), Speciation and its consequences (pp. 527–553). Sunderland: Sinauer Associates.

    Google Scholar 

  78. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2016). Cluster: Cluster analysis basics and extensions. R package version 2.0.5. https://cran.r-project.org/web/packages/cluster.

  79. Mallet, J. (2007). Hybrid speciation. Nature, 446(7133), 279–283. https://doi.org/10.1038/nature05706.

    CAS  PubMed  Article  Google Scholar 

  80. Marticorena, A. (2008). Rosaceae. In F. O. Zuloaga, O. Morrone & M. J. Belgrano (Eds.), Catálogo de las Plantas Vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay) Dicotiledoneae: Fabaceae (Senna-Zygia)-Zygophyllaceae. Monographs in Systematic Botany from the Missouri Botanical Garden (Vol. 3, pp. 2852–2871). Missouri: Missouri Botanical Garden Press.

    Google Scholar 

  81. Matzke, N. J. (2012). Founder-event speciation in BioGeoBEARS package dramatically improves likelihoods and alters parameter inference in Dispersal-Extinction-Cladogenesis (DEC) analyses. Frontiers of Biogeography, 4, 210.

    Google Scholar 

  82. Matzke, N. J. (2013). BioGeoBEARS: BioGeography with Bayesian (and Likelihood) Evolutionary Analysis in R Scripts. Berkeley: University of California.

    Google Scholar 

  83. Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology, 63(6), 951–970. https://doi.org/10.1093/sysbio/syu056.

    PubMed  Article  Google Scholar 

  84. Mayr, E. (1959). Isolation as an evolutionary factor. Proceedings of the American Philosophical Society, 103(2), 221–230.

    Google Scholar 

  85. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE) (pp. 1–8). New Orleans: IEEE.

  86. Nosil, P. (2012). Ecological speciation. New York: Oxford University Press.

    Google Scholar 

  87. Nosil, P., & Harmon, L. (2009). Niche dimensionality and ecological speciation. In R. Butlin, J. Bridle & D. Schluter (Eds.), Speciation and patterns of diversity (pp. 127–154). New York: Cambridge University Press.

    Google Scholar 

  88. Novara, L. J. (1993). Flora del Valle de Lerma: Rosaceae Juss. Aportes Botánicos de Salta, Serie Flora, 2, 1–44.

    Google Scholar 

  89. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. (2017). vegan: Community Ecology Package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan.

  90. Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., … Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051%5B0933:TEOTWA%5D2.0.CO;2.

    Article  Google Scholar 

  91. Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884. https://doi.org/10.1038/44766.

    CAS  PubMed  Article  Google Scholar 

  92. Peterson, A. T. (2011). Ecological niche conservatism: A time-structured review of evidence. Journal of Biogeography, 38(5), 817–827. https://doi.org/10.1111/j.1365-2699.2010.02456.x.

    Article  Google Scholar 

  93. Peterson, A. T., Soberón, J., & Sánchez-Cordero, V. (1999). Conservatism of ecological niches in evolutionary time. Science, 285, 1265–1267. https://doi.org/10.1126/science.285.5431.1265.

    CAS  PubMed  Article  Google Scholar 

  94. Phillimore, A. (2014). Geography, range evolution, and speciation. In J. Losos, D. Baum, D. Futuyma, H. Hoekstra, R. Lenski, A. Moore, C. L. Peichel, D. Schluter & M. Whitlock (Eds.), The Princeton guide to evolution (pp. 50–511). New Jersey: Princeton University Press.

    Google Scholar 

  95. Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of Maxent. Ecography, 40, 887–893. https://doi.org/10.1111/ecog.03049.

    Article  Google Scholar 

  96. Ponce, J. F., Rabassa, J., Coronato, A., & Borromei, A. M. (2011). Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biological Journal of the Linnean Society, 103(2), 363–379. https://doi.org/10.1111/j.1095-8312.2011.01653.x.

    Article  Google Scholar 

  97. Pyron, R. A., Costa, G. C., Patten, M. A., & Burbrink, F. T. (2015). Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological Reviews, 90(4), 1248–1262. https://doi.org/10.1111/brv.12154.

    PubMed  Article  Google Scholar 

  98. Quantum Gis Development Team. (2016). Quantum Gis Geographic Information System. Open Source Geospatial Foundation Project. https://www.qgis.org/.

  99. R Core Team. (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  100. Rabassa, J. (2008). Late Cenozoic glaciations in Patagonia and Tierra del Fuego. Developments in Quaternary Sciences, 11, 151–204. https://doi.org/10.1016/S1571-0866(07)10008-7.

    Article  Google Scholar 

  101. Rabassa, J., Coronato, A., & Martinez, O. (2011). Late Cenozoic glaciations in Patagonia and Tierra del Fuego: An updated review. Biological Journal of the Linnean Society, 103(2), 316–335. https://doi.org/10.1111/j.1095-8312.2011.01681.x.

    Article  Google Scholar 

  102. Rabassa, J., & Ponce, J. F. (2013). The Heinrich and Dansgaard-Oeschger climatic events during Marine Isotopic Stage 3: Searching for appropriate times for human colonization of the Americas. Quaternary International, 299, 94–105.

    Article  Google Scholar 

  103. Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2013). Tracer v1.6.0. http://beast.bio.ed.ac.uk/.

  104. Ramsey, J. (2011). Polyploidy and ecological adaptation in wild yarrow. Proceedings of the National Academy of Sciences of United States of America, 108(17), 7096–7101. https://doi.org/10.1073/pnas.1016631108.

    Article  Google Scholar 

  105. Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x.

    Article  Google Scholar 

  106. Rieseberg, L. H., & Willis, J. H. (2007). Plant speciation. Science, 317(5840), 910–914. https://doi.org/10.1126/science.1137729.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. Ritz, C. M., Schmuths, H., & Wissemann, V. (2004). Evolution by reticulation: European dogroses originated by multiple hybridization across the genus Rosa. Journal of Heredity, 96(1), 4–14. https://doi.org/10.1093/jhered/esi011.

    CAS  PubMed  Article  Google Scholar 

  108. Romoleroux, K., Meneses, R. I., & Achá, S. (2014). Rosaceae. In P. M. Jorgensen, M. H. Nee & S. G. Beck (Eds.), Catalogo de las Plantas Vasculares de Bolivia, Vol. 2. Monographs in systematic botany from the Missouri Botanical Garden (Vol. 127, pp. 1131–1140). Missouri: Missouri Botanical Garden Press.

    Google Scholar 

  109. Rosser, N., Kozak, K. M., Phillimore, A. B., & Mallet, J. (2015). Extensive range overlap between heliconiine sister species: Evidence for sympatric speciation in butterflies? BMC Evolutionary Biology, 15(1), 125. https://doi.org/10.1186/s12862-015-0420-3.

    PubMed  Article  PubMed Central  Google Scholar 

  110. Rothmaler, W. (1939). Sobre algunas Rosáceas sudamericanas: I. Sinopsis de Tetraglochin. Darwiniana, 3, 429–437.

    Google Scholar 

  111. Rull, V. (2011). Neotropical biodiversity: Timing and potential drivers. Trends in Ecology & Evolution, 26(10), 508–513. https://doi.org/10.1016/j.tree.2011.05.011.

    Article  Google Scholar 

  112. Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352. https://doi.org/10.1111/j.1461-0248.2004.00715.x.

    Article  Google Scholar 

  113. Rutter, N., Coronato, A., Helmens, K., Rabassa, J., & Zárate, M. (2012). Glaciations in North and South America from the Miocene to the Last Glacial Maximum. Comparisons, linkages and uncertainties. New York: Springer. https://doi.org/10.1007/978-94-007-4399-1.

    Google Scholar 

  114. Salariato, D. L., & Zuloaga, F. O. (2017). Climatic niche evolution in the Andean genus Menonvillea (Cremolobeae: Brassicaceae). Organisms Diversity & Evolution, 17(1), 11–28.

    Article  Google Scholar 

  115. Schemske, D. W. (2010). Adaptation and the origin of species. The American Naturalist, 176(S1), S4–S25. https://doi.org/10.1086/657060.

    PubMed  Article  Google Scholar 

  116. Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology & Evolution, 16(7), 372–380. https://doi.org/10.1016/S0169-5347(01)02198-X.

    CAS  Article  Google Scholar 

  117. Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323(5915), 737–741. https://doi.org/10.1126/science.1160006.

    CAS  PubMed  Article  Google Scholar 

  118. Schmidt-Lebuhn, A. N., Fuchs, J., Hertel, D., Hirsch, H., Toivonen, J., & Kessler, M. (2010). An Andean radiation: Polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae). Plant Biology, 12(6), 917–926. https://doi.org/10.1111/j.1438-8677.2009.00297.x.

    CAS  PubMed  Article  Google Scholar 

  119. Schoener, T. W. (1970). Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51, 408–418. https://doi.org/10.2307/1935376.

    Article  Google Scholar 

  120. Sérsic, A. N., Cosacov, A., Cocucci, A. A., Johnson, L. A., Pozner, R., Avila, L. J., … Morando, M. (2011). Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biological Journal of the Linnean Society, 103(2), 475–494. https://doi.org/10.1111/j.1095-8312.2011.01656.x.

    Article  Google Scholar 

  121. Simpson, B. B. (1979). A revision of the genus Polylepis (Rosaceae: Sanguisorbeae). Smithsonian Contributions to Botany, 43, 1–62.

    Article  Google Scholar 

  122. Simpson, B. B. (1986). Speciation and specialization of Polylepis in the Andes. In F. Vuillemier & M. Monasterio (Eds.), High altitude tropical biogeography (pp. 304–316). New York: Oxford University Press.

    Google Scholar 

  123. Spalink, D., Drew, B. T., Pace, M. C., Zaborsky, J. G., Li, P., Cameron, K. M., … Sytsma, K. J. (2016). Evolution of geographical place and niche space: Patterns of diversification in the North American sedge (Cyperaceae) flora. Molecular Phylogenetics and Evolution, 95, 183–195.

    Article  Google Scholar 

  124. Talent, N., & Dickinson, T. A. (2005). Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): Evolutionary inferences from flow cytometry of nuclear DNA amounts. Botany, 83(10), 1268–1304.

    CAS  Google Scholar 

  125. Thiers, B. (2018) [Continuously updated] Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Accessed February 2018, from http://sweetgum.nybg.org/ih.

  126. Trabucco, A., & Zomer, R. J. (2009). Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information. http://www.csi.cgiar.org.

  127. Turelli, M., Barton, N. H., & Coyne, J. A. (2001). Theory and speciation. Trends in Ecology & Evolution, 16(7), 330–343. https://doi.org/10.1016/S0169-5347(01)02177-2.

    CAS  Article  Google Scholar 

  128. Uba, C. E., Hasler, C. A., Buatois, L. A., Schmitt, A. K., & Plessen, B. (2009). Isotopic, paleontologic, and ichnologic evidence for late Miocene pulses of marine incursions in the central Andes. Geology, 37, 827–830. https://doi.org/10.1130/G30014A.1.

    CAS  Article  Google Scholar 

  129. Vamosi, J. C., & Dickinson, T. A. (2006). Polyploidy and diversification: A phylogenetic investigation in Rosaceae. International Journal of Plant Sciences, 167(2), 349–358. https://doi.org/10.1086/499251.

    Article  Google Scholar 

  130. Wang, P., Liu, Y., Liu, Y., Chang, Y., Wang, N., & Zhang, Z. (2017). The role of niche divergence and geographic arrangement in the speciation of Eared Pheasants (Crossoptilon, Hodgson 1938). Molecular Phylogenetics and Evolution, 113, 1–8. https://doi.org/10.1016/j.ympev.2017.05.003.

    PubMed  Article  Google Scholar 

  131. Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x.

    PubMed  Article  Google Scholar 

  132. Wiens, J. J. (2004a). Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution, 58(1), 193–197. https://doi.org/10.1554/03-447.

    PubMed  Article  Google Scholar 

  133. Wiens, J. J. (2004b). What is speciation and how should we study it? The American Naturalist, 163(6), 914–923. https://doi.org/10.1086/386552.

    PubMed  Article  Google Scholar 

  134. Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., … Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324. https://doi.org/10.1111/j.1461-0248.2010.01515.x.

    PubMed  Article  Google Scholar 

  135. Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431.

    Article  Google Scholar 

  136. Xiang, Y., Huang, C. H., Hu, Y., Wen, J., Li, S., Yi, T., Chen, H., Xiang, J., & Ma, H. (2016). Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology and Evolution, 34(2), 262–281. https://doi.org/10.1093/molbev/msw242.

    CAS  Article  PubMed Central  Google Scholar 

  137. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693. https://doi.org/10.1126/science.1059412.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. Zamaloa, M. C. (2000). Palinoflora y ambiente en el Terciario del nordeste de Tierra del Fuego, Argentina. Revista del Museo Argentino de Ciencias Naturales nueva serie, 2(1), 43–51.

    Article  Google Scholar 

  139. Zardini, E. M. (1973). Los géneros de Rosáceas espontáneos en la República Argentina. Boletín de la Sociedad Argentina de Botánica, 15, 209–228.

    Google Scholar 

  140. Zetter, R., Hofmann, C. C., Draxler, I., Durango de Cabrera, J., Vergel, M. M., & Vervoorst, F. (1999). A rich Middle Eocene microflora at Arroyo de los Mineros, near Cañadón Beta, NE Tierra del Fuego Province, Argentina. Abhandlungen der Geologischen Bundesanstalt, 56, 436–460.

    Google Scholar 

  141. Zhang, S. D., Jin, J. J., Chen, S. Y., Chase, M. W., Soltis, D. E., Li, H. T., Yang, J. B., Li, D. Z., & Yi, T. S. (2017). Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytologist, 214(3), 1355–1367. https://doi.org/10.1111/nph.14461.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

Our deep gratitude goes to Dr. Fernando O. Zuloaga for passing his collections for our study, as well as providing valuable support, guidance, and suggestions during this work. We thank the directors, curators, and collection managers of the herbaria listed.

Funding

This project was was funded by ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) Grant PICT-2013-1042, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) Grant PIP-112-201301-00124CO, and the National Geographic Society Grant #9841-16, for which we are profoundly grateful.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diego L. Salariato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Distribution map of Tetraglochin and delimited area corresponding to the 50 km-buffered minimum convex polygon used in the niche analyses both along the environmental (E) and geographical (G) space. (PDF 878 KB)

Left

Results from the climatic niche analyses in the space environmental (E) space obtained using the PCA-env method. : Correlation circles showing the contribution of environmental variables on the first three axes of the PCA-env and the percentage of inertia explained. Right: PCAenv scatterplots of the first three principal components based on 21 climatic variables for the six Tetraglochin species represented by 388 occurrences. (PDF 140 KB)

Left

Biogeography of Tetraglochin species and their climatic niches along the environmental (E) space. Left: ancestral range estimation (ARE) on the Tetraglochin chronogram using the DEC model in BioGeoBEARS. States at nodes (squares) represent the area with highest ML probability before the instantaneous speciation event, whereas those on branches represent the state of the descendant lineage immediately after speciation. Squares with more than one letter refer to ancestral areas composed of more than one biogeographical area. Boxes to the left of taxon names indicate areas of tip species. Probabilities of ancestral areas are shown to the right of nodes. Right: Climatic niches for species of Tetraglochin produced by the three main axes of the PCA-env. For each species, the gray to black shading represents the grid cell density of the species occurrence (black being the highest density). The dashed line represents 50% of the available environment and the solid line represents 100%. (PDF 260 KB)

A

Results from the niche comparisons between Tetraglochin species in the environmental (E) space. Niche overlap estimations among Tetraglochin species using the first three axes of the PCA-env. A. PCs 1-2. B. PCs 1-3. C. PCs 2-3. For A-C, left: pairwise niche overlap between each Tetraglochin species quantified using the Schoener’s D index, right: agglomerative hierarchical clustering UPGMA algorithm using niche overlap estimations. SA: Southern Andean distribution; CA: Central Andean distribution; SA-CA: Southern and Central Andean distribution. (PDF 307 KB)

Bar plots of niche breadth and geographical range size values for Tetraglochin species. Niche breadth for each species was estimated as the sum of its variances on the first three principal components obtained in the PCA-env method. Geographical range size was estimated from binary (presence/absence) distributions maps for each Tetraglochin species derived from the SDM and using the maximum training sensitivity plus specificity as threshold. (PDF 307 KB)

Results from the species distribution modelling (SDM) for Tetraglochin species. Maps show predicted suitable climatic conditions (logistic output) from the MaxEnt model for the six species of Tetraglochin, using BIO1 (Annual Mean Temperature), BIO2 (Mean Diurnal Range), BIO3 (isothermality), BIO4 (temperature seasonality), BIO9 (Mean Temperature of Driest Quarter), BIO12 (annual precipitation), BIO19 (Precipitation of Coldest Quarter), and PET (potential evapotranspiration) as climatic variables. Dots represent specimen occurrences used for the SDM analyses. (PDF 688 KB)

Ancestral climatic tolerances plotted on the MCC species tree for variables analyzed in the geographical (G) space. Interior nodes represent the mean of estimated ancestral climatic tolerances using maximum likelihood and 100 random samples from the predicted niche occupancy (PNO) profiles. The 80 % density interval of climatic tolerances is indicated by a vertical dashed line, and the mean is indicated by the taxon label. BIO1: Annual Mean Temperature, BIO2: Mean Diurnal Range, BIO3: isothermality, BIO4: temperature seasonality, BIO9: Mean Temperature of Driest Quarter, BIO12: annual precipitation, BIO19: Precipitation of Coldest Quarter, and PET: potential evapotranspiration). (PDF 30 KB)

Biplot of the first two principal components extracted in the phylogenetic principal component analyses (pPCA) using the weighted means of the PNOs for each species and environmental variables. BIO1: Annual Mean Temperature, BIO2: Mean Diurnal Range, BIO3: isothermality, BIO4: temperature seasonality, BIO9: Mean Temperature of Driest Quarter, BIO12: annual precipitation, BIO19: Precipitation of Coldest Quarter, and PET: potential evapotranspiration). (PDF 19 KB)

Binary (presence/absence) distributions maps for Tetraglochin species derived from the SDM outputs using the maximum training sensitivity plus specificity as threshold. (PDF 77 KB)

Geographical range overlap among species of Tetraglochin. Binary (presence/absence) distributions maps for each Tetraglochin species, derived from the SDM outputs and using the maximum training sensitivity plus specificity as threshold, were obtained to estimated the geographical overlap between species pairs. Green and blue cells indicate the presence of only one species, while red cells represent areas with sympatric distribution (presence of both species in the same cell). (PDF 1238 KB)

Supplementary material 11 (DOCX 52 KB)

Supplementary material 12 (DOCX 12 KB)

Supplementary material 13 (DOCX 15 KB)

Supplementary material 14 (DOCX 18 KB)

Supplementary material 15 (DOCX 14 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salariato, D.L., Acosta, J.M. & Cialdella, A.M. Ecological and Spatial Patterns Associated with Diversification of the Shrub Genus Tetraglochin along Southern-Central Andes (Rosaceae). Evol Biol 46, 145–163 (2019). https://doi.org/10.1007/s11692-019-09472-y

Download citation

Keywords

  • Niche divergence
  • Phylogenetic niche conservatism
  • Pleistocene
  • Patagonian steppe
  • The Andes
  • South America