Ecological and Ecomorphological Specialization Are Not Associated with Diversification Rates in Muroid Rodents (Rodentia: Muroidea)

Research Article

Abstract

Multiple diversification rate shifts explain uneven clade richness in muroid rodents. Previous muroid studies have shown that extrinsic factors, notwithstanding ecological opportunity, are poor predictors of clade diversity. Here, we use a 297-muroid species chronogram that is sampled proportional to total clade diversity, along with various trait-dependent diversification approaches to investigate the association between diversification rates with intrinsic attributes—diet, habitat, body mass, and relative tail length. We found some association between both dietary specialization and body mass, as well as between habitat specialization with relative tail lengths using phylogenetic analyses of variance. However, there was no significant association between diversification rates with the evolution of these traits in muroid rodents. We also show that several of the state-dependent diversification approaches are highly susceptible to Type I error—a result that is in accordance with recent criticisms of these methods. Finally, we discuss several potential causes for the lack of association between the examined trait data with diversification rates, ranging from methodological biases (e.g. method conservativism) to biology (e.g. behavioral plasticity and ecological opportunism of muroid rodents).

Keywords

Body size Generalization Hidden-state speciation and extinction Multistate characters Quantitative traits Trait-dependent diversification 

Notes

Acknowledgements

Earlier versions of the manuscript benefited from comments by Gregory Erickson, Joseph Travis, Thomas Miller, William Parker, and especially John Schenk. We also appreciate correspondence with Daniel Rabosky concerning the general issues with state-dependent diversification methods. An anonymous reviewer contributed useful comments that improved the final version of the manuscript. Financial support for this work was provided by a fellowship from Kuwait University to BHA.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Supplementary material

11692_2018_9449_MOESM1_ESM.eps (4 mb)
Full version of Schenk et al. (2013) muroid rodent chronogram (showing the tip labels), with some of the major taxonomic groups indicated. (EPS 4078 KB)
11692_2018_9449_MOESM2_ESM.xlsx (56 kb)
Diet and habitat data for muroid species used in the analyses. For diet, C = carnivore, O = omnivore, H = herbivore. For habitat, A = arboreal, F = fossorial, T = terrestrial. Diet description and references are also included. Missing data are designated with (−). See Materials and Methods for more information. (XLSX 55 KB)
11692_2018_9449_MOESM3_ESM.xlsx (24 kb)
Log-transformed adult body mass (log mass) and relative tail lengths (rtl) of muroid rodents used in the analyses. Mass is in grams and lengths are in millimeters. Data extracted from Alhajeri et al. (<link rid="bib5">2016</link>). See Material and methods for more information. (XLSX 23 KB)
11692_2018_9449_MOESM4_ESM.xlsx (17 kb)
Summary of alternative multistate-dependent speciation and extinction (MuSSE) model fits for the association between diet and diversification rates in muroid rodents. Both the results for the (a) empirical (observed) analysis, and the (b–k) ten tip-shuffled (randomized) analyses are shown. The best-fit model based on ∆AICc and Akaike weights (wi) are denoted in bold. n = number of estimated parameters; ln L = log-likelihood score; ∆AICc = fit relative to the model with the lowest AICc score (italicized). (XLSX 17 KB)
11692_2018_9449_MOESM5_ESM.xlsx (18 kb)
Summary of alternative multistate-dependent speciation and extinction (MuSSE) model fits for the association between habitat and diversification rates in muroid rodents. Both the results for the (a) empirical (observed) analysis, and the (b–k) ten tip-shuffled (randomized) analyses are shown. The best-fit model based on ∆AICc and Akaike weights (wi) are denoted in bold. n = number of estimated parameters; ln L = log-likelihood score; ∆AICc = fit relative to the model with the lowest AICc score (italicized). (XLSX 17 KB)
11692_2018_9449_MOESM6_ESM.xlsx (20 kb)
Summary of alternative quantitative state-dependent speciation and extinction (QuaSSE) model fits for the association between log body mass and diversification rates in muroid rodents. The extinction rate (µ) is set as constant (constrained) in all the models, and only the speciation (λ) rate is allowed to vary. Both the results for the (a) empirical (observed) analysis, and the (b–k) ten tip-shuffled (randomized) analyses, are shown. The best-fit model based on ∆AICc and Akaike weights (wi) are denoted in bold. n = number of estimated parameters; ln L = log-likelihood score; ∆AICc = fit relative to the model with the lowest AICc score (italicized). (XLSX 19 KB)
11692_2018_9449_MOESM7_ESM.xlsx (20 kb)
Summary of alternative quantitative state-dependent speciation and extinction (QuaSSE) model fits for the association between relative tail length and diversification rates in muroid rodents. The extinction rate (µ) is set as constant (constrained) in all the models, and only the speciation (λ) rate is allowed to vary. Both the results for the (a) empirical (observed) analysis, and the (b–k) ten tip-shuffled (randomized) analyses, are shown. The best-fit model based on ∆AICc and Akaike weights (wi) are denoted in bold. n = number of estimated parameters; ln L = log-likelihood score; ∆AICc = fit relative to the model with the lowest AICc score (italicized). (XLSX 19 KB)

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), 2nd International symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.Google Scholar
  2. Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.CrossRefGoogle Scholar
  3. Alexander, R. M., & Vernon, A. (1975). The mechanics of hopping by kangaroos (Macropodidae). Journal of Zoology, 177(2), 265–303.  https://doi.org/10.1111/j.1469-7998.1975.tb05983.x.CrossRefGoogle Scholar
  4. Alhajeri, B. H. (2014). Adaptation, diversification, and desert ecology of the most diverse order of mammals (Mammalia, Rodentia). Tallahassee, FL: Department of Biological Science, Florida State University.Google Scholar
  5. Alhajeri, B. H., Schenk, J. J., & Steppan, S. J. (2016). Ecomorphological diversification following continental colonization in muroid rodents (Rodentia: Muroidea). Biological Journal of the Linnean Society, 117(3), 463–481.  https://doi.org/10.1111/bij.12695.CrossRefGoogle Scholar
  6. Beaulieu, J. M., & O’Meara, B. C. (2016). Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Systematic Biology, 65(4), 583.  https://doi.org/10.1093/sysbio/syw022.PubMedCrossRefGoogle Scholar
  7. Blois, J. L., & Hadly, E. A. (2009). Mammalian response to Cenozoic climatic change. Annual Review of Earth and Planetary Sciences, 37, 181–208.  https://doi.org/10.1146/annurev.earth.031208.100055.CrossRefGoogle Scholar
  8. Blueweiss, L., Fox, H., Kudzma, V., Nakashima, D., Peters, R., & Sams, S. (1978). Relationships between body size and some life history parameters. Oecologia, 37(2), 257–272.  https://doi.org/10.1007/BF00344996.PubMedCrossRefGoogle Scholar
  9. Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52(3), 345–370.  https://doi.org/10.1007/BF02294361.CrossRefGoogle Scholar
  10. Büchi, L., & Vuilleumier, S. (2014). Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. The American Naturalist, 183(5), 612–624.  https://doi.org/10.1086/675756.PubMedCrossRefGoogle Scholar
  11. Burin, G., Kissling, W. D., Guimarães, P. R. Jr, Şekercioğlu, Ç. H., & Quental, T. B. (2016). Omnivory in birds is a macroevolutionary sink. Nature Communications, 7, 11250.  https://doi.org/10.1038/ncomms11250.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer.Google Scholar
  13. Cantalapiedra, J. L., Fitzjohn, R. G., Kuhn, T. S., Fernández, M. H., DeMiguel, D., Azanza, B., et al. (2014). Dietary innovations spurred the diversification of ruminants during the Caenozoic. Proceedings of the Biological Sciences/The Royal Society, 281(1776), 20132746.  https://doi.org/10.1098/rspb.2013.2746.CrossRefGoogle Scholar
  14. Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P., Sechrest, W., et al. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309(5738), 1239–1241.  https://doi.org/10.1126/science.1116030.PubMedCrossRefGoogle Scholar
  15. Carleton, M. D., & Musser, G. G. (1984). Muroid rodents. In S. Anderson & J. K. Jones Jr. (Eds.), Orders and families of recent mammals of the world (pp. 289–379). New York: Wiley.Google Scholar
  16. Clauset, A., & Erwin, D. H. (2008). The evolution and distribution of species body size. Science, 321(5887), 399–401.  https://doi.org/10.1126/science.1157534.PubMedCrossRefGoogle Scholar
  17. Collar, D. C., O’Meara, B. C., Wainwright, P. C., & Near, T. J. (2009). Piscivory limits diversification of feeding morphology in centrarchid fishes. Evolution, 63(6), 1557–1573.  https://doi.org/10.1111/j.1558-5646.2009.00626.x.PubMedCrossRefGoogle Scholar
  18. Corti, M., & Loy, A. (1987). Morphometric divergence in southern European moles (Insectívora, Talpidae). Bolletino di Zoologia, 54(2), 187–191.  https://doi.org/10.1080/11250008709355580.CrossRefGoogle Scholar
  19. Culver, D. C., & Pipan, T. (2014). Shallow Subterranean habitats: Ecology, evolution, and conservation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  20. Dawson, N. J., & Keber, A. W. (1979). Physiology of heat loss from an extremity: The tail of the rat. Clinical and Experimental Pharmacology and Physiology, 6(1), 69–80.  https://doi.org/10.1111/j.1440-1681.1979.tb00009.x.PubMedCrossRefGoogle Scholar
  21. Deacon, R. M. J. (2006). Burrowing in rodents: A sensitive method for detecting behavioral dysfunction. Nature Protocols, 1(1), 118–121.  https://doi.org/10.1038/nprot.2006.19.PubMedCrossRefGoogle Scholar
  22. Dial, K. P., & Marzluff, J. M. (1988). Are the smallest organisms the most diverse? Ecology, 69(5), 1620–1624.  https://doi.org/10.2307/1941660.CrossRefGoogle Scholar
  23. Ebel, E. R., DaCosta, J. M., Sorenson, M. D., Hill, R. I., Briscoe, A. D., Willmott, K. R., et al. (2015). Rapid diversification associated with ecological specialization in Neotropical Adelpha butterflies. Molecular Ecology, 24(10), 2392–2405.  https://doi.org/10.1111/mec.13168.PubMedCrossRefGoogle Scholar
  24. Etienne, R. S., de Visser, S. N., Janzen, T., Olsen, J. L., Olff, H., & Rosindell, J. (2012). Can clade age alone explain the relationship between body size and diversity? Interface Focus, 2(2), 170–179.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fabre, P. H., Hautier, L., Dimitrov, D., Douzery, P., & Emmanuel, J. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology, 12.  https://doi.org/10.1186/1471-2148-12-88
  26. Farrell, B. D., Dussourd, D. E., & Mitter, C. (1991). Escalation of plant defense: Do latex and resin canals spur plant diversification?. The American Naturalist, 138(4), 881–900.CrossRefGoogle Scholar
  27. Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I., & Meiri, S. (2016). Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Global Ecology and Biogeography, 25(2), 187–197.  https://doi.org/10.1111/geb.12398.CrossRefGoogle Scholar
  28. FitzJohn, R. G. (2010). Quantitative traits and diversification. Systematic Biology, 59(6), 619–633.  https://doi.org/10.1093/sysbio/syq053.PubMedCrossRefGoogle Scholar
  29. FitzJohn, R. G. (2012). Diversitree: Comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution, 3(6), 1084–1092.  https://doi.org/10.1111/j.2041-210X.2012.00234.x.CrossRefGoogle Scholar
  30. FitzJohn, R. G., Maddison, W. P., & Otto, S. P. (2009). Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Systematic Biology, 58(6), 595–611.  https://doi.org/10.1093/sysbio/syp067.PubMedCrossRefGoogle Scholar
  31. Fooden, J., & Albrecht, G. H. (1999). Tail-length evolution in fascicularis -group Macaques (Cercopithecidae: Macaca). International Journal of Primatology, 20, 431–440.CrossRefGoogle Scholar
  32. Freckleton, R. P., Phillimore, A. B., & Pagel, M. (2008). Relating traits to diversification: A simple test. The American Naturalist, 172(1), 102–115.  https://doi.org/10.1086/588076.PubMedCrossRefGoogle Scholar
  33. Gamisch, A. (2016). Notes on the statistical power of the binary state speciation and extinction (BiSSE) model. Evolutionary Bioinformatics, 12, 165–174.  https://doi.org/10.4137/EBO.S39732.CrossRefGoogle Scholar
  34. Gardezi, T., & da Silva, J. (1999). Diversity in relation to body size in mammals: A comparative study. The American Naturalist, 153(1), 110–123.  https://doi.org/10.1086/303150.PubMedCrossRefGoogle Scholar
  35. Garland, T., Dickerman, A. W., Janis, C. M., & Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Systematic Biology, 42(3), 265–292.  https://doi.org/10.1093/sysbio/42.3.265.CrossRefGoogle Scholar
  36. Gittleman, J. L., & Purvis, A. (1998). Body size and species-richness in carnivores and primates. Proceedings of the Biological sciences/The Royal Society, 265(1391), 113–119.  https://doi.org/10.1098/rspb.1998.0271.CrossRefGoogle Scholar
  37. Goldberg, E. E., Kohn, J. R., Lande, R., Robertson, K. A., Smith, S. A., & Igić, B. (2010). Species selection maintains self-incompatibility. Science, 330(6003), 493–495.  https://doi.org/10.1126/science.1194513.PubMedCrossRefGoogle Scholar
  38. Goldberg, E. E., Lancaster, L. T., & Ree, R. H. (2011). Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Systematic Biology, 60(4), 451–465.  https://doi.org/10.1093/sysbio/syr046.PubMedCrossRefGoogle Scholar
  39. Harmon, L. J., Melville, J., Larson, A., & Losos, J. B. (2008). the role of geography and ecological opportunity in the diversification of day geckos (Phelsuma). Systematic Biology, 57(4), 562–573.  https://doi.org/10.1080/10635150802304779.PubMedCrossRefGoogle Scholar
  40. Hayssen, V. (2008). Patterns of body and tail length and body mass in Sciuridae. Journal of Mammalogy, 89(4), 852–873.  https://doi.org/10.1644/07-MAMM-A-217.1.CrossRefGoogle Scholar
  41. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.  https://doi.org/10.2307/4615733.Google Scholar
  42. Hunter, J. P. (1998). Key innovations and the ecology of macroevolution. Trends in Ecology & Evolution, 13, 31-36.CrossRefGoogle Scholar
  43. Hutchinson, G. E., & MacArthur, R. A. (1959). A theoretical ecological model of size distributions among species of animals. American Naturalist, 93, 117–125.CrossRefGoogle Scholar
  44. Igea, J., Miller, E. F., Papadopulos, A. S. T., & Tanentzap, A. J. (2016). Seed size drives species diversification across angiosperms. bioRxiv. http://biorxiv.org/content/early/2016/05/12/053116.abstract.
  45. Isaac, N. J., Jones, K. E., Gittleman, J. L., & Purvis, A. (2005). Correlates of species richness in mammals: Body size, life history, and ecology. The American Naturalist, 165(5), 600–607.PubMedCrossRefGoogle Scholar
  46. Janis, C. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics, 24, 467–500.  https://doi.org/10.1146/annurev.es.24.110193.002343.CrossRefGoogle Scholar
  47. Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463–1464.  https://doi.org/10.1093/bioinformatics/btq166.PubMedCrossRefGoogle Scholar
  48. Khanna, D. R., & Yadav, P. R. (2005). Biology of mammals. New Delhi: Discovery Publishing House.Google Scholar
  49. Kochmer, J. P., & Wagner, R. H. (1988). Why are there so many kinds of passerine birds? Because they are small. a reply to raikow. Systematic Biology, 37(1), 68–69.  https://doi.org/10.2307/2413193.Google Scholar
  50. LaBarbera, M. (1989). Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics, 20(1), 97–117.  https://doi.org/10.1146/annurev.es.20.110189.000525.CrossRefGoogle Scholar
  51. Langerhans, R. B. (2010). Predicting evolution with generalized models of divergent selection: A case study with Poeciliid Fish. Integrative and Comparative Biology, 50(6), 1167–1184.  https://doi.org/10.1093/icb/icq117.PubMedCrossRefGoogle Scholar
  52. Lemen, C. (1980). Relationship between relative brain size and climbing ability in peromyscus. Journal of Mammalogy, 61(2), 360–364.CrossRefGoogle Scholar
  53. Liow, L. H. (2004). A test of Simpson’s “rule of the survival of the relatively unspecialized” using fossil crinoids. The American Naturalist, 164(4), 431–443.  https://doi.org/10.1086/423673.PubMedGoogle Scholar
  54. Liow, L. H., Fortelius, M., Bingham, E., Lintulaakso, K., Mannila, H., Flynn, L., & Stenseth, N. C. (2008). Higher origination and extinction rates in larger mammals. Proceedings of the National Academy of Sciences of the United States of America, 105(16), 6097–6102.  https://doi.org/10.1073/pnas.0709763105.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Liow, L. H., Fortelius, M., Lintulaakso, K., Mannila, H., & Stenseth, N. C. (2009). Lower extinction risk in sleep-or-hide mammals. The American Naturalist, 173(2), 264–272.  https://doi.org/10.1086/595756.PubMedCrossRefGoogle Scholar
  56. Little, R. A., & Stoner, H. B. (1968). The measurement of heat loss from the rat’s tail. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences, 53(1), 76–83.  https://doi.org/10.1113/expphysiol.1968.sp001947.PubMedCrossRefGoogle Scholar
  57. Lobato, F. L., Barneche, D. R., Siqueira, A. C., Liedke, A. M. R., Lindner, A., Pie, M. R., et al. (2014). Diet and diversification in the evolution of coral reef fishes. PLoS ONE, 9(7), e102094.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lowman, M., & Rinker, H. B. (2004). Forest canopies. Cambridge: Academic Press.Google Scholar
  59. Machac, A. (2014). Detecting trait-dependent diversification under diversification slowdowns. Evolutionary Biology, 41(2), 201–211.  https://doi.org/10.1007/s11692-013-9258-z.CrossRefGoogle Scholar
  60. Maddison, W. P., Midford, P. E., & Otto, S. P. (2007). Estimating a Binary character’s effect on speciation and extinction. Systematic Biology, 56(5), 701–710.  https://doi.org/10.1080/10635150701607033.PubMedCrossRefGoogle Scholar
  61. Mares, M. A. (2009). A desert calling: Life in a forbidding landscape. Cambridge: Harvard University Press.Google Scholar
  62. Martin, R. A. (1992). Generic species richness and body mass in North American mammals: Support for the inverse relationship of body size and speciation rate. Historical Biology, 6(2), 73–90.  https://doi.org/10.1080/10292389209380420.CrossRefGoogle Scholar
  63. Martin, S. A., Alhajeri, B. H., & Steppan, S. J. (2016). Dietary adaptations in the teeth of murine rodents (Muridae): A test of biomechanical predictions. Biological Journal of the Linnean Society, 119(4), 766–784.  https://doi.org/10.1111/bij.12822.CrossRefGoogle Scholar
  64. Matthews, L. J., Arnold, C., Machanda, Z., & Nunn, C. L. (2011). Primate extinction risk and historical patterns of speciation and extinction in relation to body mass. Proceedings of the Royal Society B: Biological Sciences, 278(1709), 1256–1263.  https://doi.org/10.1098/rspb.2010.1489.PubMedCrossRefGoogle Scholar
  65. May, R. M. (1986). The search for patterns in the balance of nature advances and retreats. Ecology, 67, 1115–1126.CrossRefGoogle Scholar
  66. Mitter, C. B., Farrell, B., & Wiegmann, B. (1988). The phylogenetic study of adaptive zones: Has phytophagy promoted insect diversification? American Naturalist, 132(1), 107–128.CrossRefGoogle Scholar
  67. Monroe, M. J., & Bokma, F. (2009). Do speciation rates drive rates of body size evolution in mammals? The American naturalist, 174(6), 912–918.  https://doi.org/10.1086/646606.PubMedCrossRefGoogle Scholar
  68. Moore, B. R., & Donoghue, M. J. (2007). Correlates of diversification in the plant clade dipsacales: Geographic movement and evolutionary innovations. The American Naturalist, 170, S28–S55.PubMedCrossRefGoogle Scholar
  69. Musser, G. G., & Carleton, M. D. (2005). Superfamily Muroidea. In D. E. Wilson & D. M. Reeder (Eds.), Mammal species of the world (3rd ed., pp. 894–1531). Baltimore: The Johns Hopkins University Press.Google Scholar
  70. Nevo, E. (1985). Speciation in action and adaptation in subterranean mole rats: Patterns and theory. Bolletino di Zoologia, 52(1–2), 65–95.  https://doi.org/10.1080/11250008509440344.CrossRefGoogle Scholar
  71. Ng, J., & Smith, S. D. (2014). How traits shape trees: New approaches for detecting character state-dependent lineage diversification. Journal of Evolutionary Biology, 27(10), 2035–2045.  https://doi.org/10.1111/jeb.12460.PubMedCrossRefGoogle Scholar
  72. Nowak, R. M. (1999). Walker’s mammals of the world. Volume 1 and 2 (6th ed.). Baltimore: John Hopkins University Press.Google Scholar
  73. Pabinger, S., Rödiger, S., Kriegner, A., Vierlinger, K., & Weinhäusel, A. (2014). A survey of tools for the analysis of quantitative PCR (qPCR) data. Biomolecular Detection and Quantification, 1(1), 23–33.  https://doi.org/10.1016/j.bdq.2014.08.002.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Parada, A., D’Elía, G., & Palma, R. E. (2015). The influence of ecological and geographical context in the radiation of Neotropical sigmodontine rodents. BMC Evolutionary Biology, 15(1), 172.  https://doi.org/10.1186/s12862-015-0440-z.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Paradis, E. (2005). Statistical analysis of diversification with species traits. Evolution, 59(1), 1–12.  https://doi.org/10.1111/j.0014-3820.2005.tb00889.x.PubMedCrossRefGoogle Scholar
  76. Parent, C. E., & Crespi, B. J. (2009). Ecological opportunity in adaptive radiation of Galápagos endemic land snails. The American Naturalist, 174, 898–905.PubMedCrossRefGoogle Scholar
  77. Peters, R. H. (1983). The ecological implications of body size. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  78. Pineda-Munoz, S., & Alroy, J. (2014). Dietary characterization of terrestrial mammals. Proceedings of the Royal Society B: Biological Sciences, 281(1789), 20141173PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pineda-Munoz, S., Evans, A. R., & Alroy, J. (2016). The relationship between diet and body mass in terrestrial mammals. Paleobiology, 42(4), 659–669.CrossRefGoogle Scholar
  80. Pinto, G., Mahler, D. L., Harmon, L. J., & Losos, J. B. (2008). Testing the island effect in adaptive radiation: Rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards. Proceedings of the Royal Society B: Biological Sciences, 275(1652), 2749–2757.  https://doi.org/10.1098/rspb.2008.0686.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Plummer, M., Best, N., Cowles, K., & Vines, K. (2010). Coda: Output analysis and diagnostics for MCMC. R package version 0.14-2Google Scholar
  82. Price, S. A., Hopkins, S. S. B., Smith, K. K., & Roth, V. L. (2012). Tempo of trophic evolution and its impact on mammalian diversification. Proceedings of the National Academy of Sciences, 109(18), 7008–7012.  https://doi.org/10.1073/pnas.1117133109.CrossRefGoogle Scholar
  83. Price, S. L., Powell, S., Kronauer, D. J. C., Tran, L. A. P., Pierce, N. E., & Wayne, R. K. (2014a). Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. Journal of Evolutionary Biology, 27(2), 242–258.  https://doi.org/10.1111/jeb.12300.PubMedCrossRefGoogle Scholar
  84. Price, T. D., Hooper, D. M., Buchanan, C. D., Johansson, U. S., Tietze, D. T., Alstrom, P., et al. (2014b). Niche filling slows the diversification of Himalayan songbirds. Nature, 509(7499), 222–225.  https://doi.org/10.1038/nature13272.PubMedCrossRefGoogle Scholar
  85. Promislow, D. E. L., & Harvey, P. H. (1990). Living fast and dying young: A comparative analysis of life-history variation among mammals. Journal of Zoology, 220(3), 417–437.  https://doi.org/10.1111/j.1469-7998.1990.tb04316.x.CrossRefGoogle Scholar
  86. Pyron, R. A., & Burbrink, F. T. (2014). Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecology Letters, 17(1), 13–21.  https://doi.org/10.1111/ele.12168.PubMedCrossRefGoogle Scholar
  87. Rabosky, D. L. (2014). Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE, 9(2), e89543.  https://doi.org/10.1371/journal.pone.0089543.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rabosky, D. L., & Goldberg, E. E. (2015). Model inadequacy and mistaken inferences of trait-dependent speciation. Systematic Biology, 64(2), 340–355.  https://doi.org/10.1093/sysbio/syu131.PubMedCrossRefGoogle Scholar
  89. Rabosky, D. L., Grundler, M., Anderson, C., Title, P., Shi, J. J., Brown, J. W., et al. (2014). BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution.  https://doi.org/10.1111/2041-210X.12199.Google Scholar
  90. Rabosky, D. L., & Huang, H. (2016). A robust semi-parametric test for detecting trait-dependent diversification. Systematic Biology, 65(2), 181.  https://doi.org/10.1093/sysbio/syv066.PubMedCrossRefGoogle Scholar
  91. Rabosky, D. L., & Matute, D. R. (2013). Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. Proceedings of the National Academy of Sciences.  https://doi.org/10.1073/pnas.1305529110.Google Scholar
  92. Rabosky, D. L., & McCune, A. R. (2010). Reinventing species selection with molecular phylogenies. Trends in Ecology & Evolution, 25(2), 68–74.  https://doi.org/10.1016/j.tree.2009.07.002.CrossRefGoogle Scholar
  93. Rabosky, D. L., Santini, F., Eastman, J., Smith, S. A., Sidlauskas, B., Chang, J., & Alfaro, M. E. (2013). Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communications, 4, 1958.  https://doi.org/10.1038/ncomms2958.PubMedCrossRefGoogle Scholar
  94. Read, A. F., & Harvey, P. H. (1989). Life history differences among the eutherian radiations. Journal of Zoology, 219(2), 329–353.  https://doi.org/10.1111/j.1469-7998.1989.tb02584.x.CrossRefGoogle Scholar
  95. Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223.  https://doi.org/10.1111/j.2041-210X.2011.00169.x.CrossRefGoogle Scholar
  96. Ricklefs, R. E. (2006). Global variation in the diversification rate of passerine birds. Ecology, 87(10), 2468–2478.PubMedCrossRefGoogle Scholar
  97. Rojas, D., Vale, Á, Ferrero, V., & Navarro, L. (2012). The role of frugivory in the diversification of bats in the Neotropics. Journal of Biogeography, 39(11), 1948–1960.  https://doi.org/10.1111/j.1365-2699.2012.02709.x.CrossRefGoogle Scholar
  98. Rolland, J., Condamine, F. L., Jiguet, F., & Morlon, H. (2014). Faster speciation and reduced extinction in the tropics contribute to the Mammalian latitudinal diversity gradient. PLoS Biology, 12(1), e1001775.  https://doi.org/10.1371/journal.pbio.1001775.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sacks, B. N., Bannasch, D. L., Chomel, B. B., & Ernest, H. B. (2008). coyotes demonstrate how habitat specialization by individuals of a generalist species can diversify populations in a heterogeneous ecoregion. Molecular Biology and Evolution, 25(7), 1384–1394.  https://doi.org/10.1093/molbev/msn082.PubMedCrossRefGoogle Scholar
  100. Samuels, J. X. (2009). Cranial morphology and dietary habits of rodents. Zoological Journal of the Linnean Society, 156(4), 864–888.  https://doi.org/10.1111/j.1096-3642.2009.00502.x.CrossRefGoogle Scholar
  101. Santana, S. E., & Cheung, E. (2016). Go big or go fish: Morphological specializations in carnivorous bats. Proceedings of the Royal Society B: Biological Sciences, 283(1830), 20160615.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Schenk, J. J., Rowe, K. C., & Steppan, S. J. (2013). Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Systematic Biology, 62(6), 837–864.  https://doi.org/10.1093/sysbio/syt050.PubMedCrossRefGoogle Scholar
  103. Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.Google Scholar
  104. Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology & Evolution, 16(7), 372–380.CrossRefGoogle Scholar
  105. Shimer, H. W. (1903). Adaptations to aquatic, arboreal, fossorial and cursorial habits in mammals. III. Fossorial adaptations. The American Naturalist, 37(444), 819–825.CrossRefGoogle Scholar
  106. Sibly, R. M., & Brown, J. H. (2007). Effects of body size and lifestyle on evolution of mammal life histories. Proceedings of the National Academy of Sciences of the United States of America, 104(45), 17707–17712.  https://doi.org/10.1073/pnas.0707725104.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Simpson, G. G. (1944). The tempo and mode in evolution. New York: Columbia University Press.Google Scholar
  108. Smits, P. D. (2015). Expected time-invariant effects of biological traits on mammal species duration. Proceedings of the National Academy of Sciences, 112(42), 13015–13020.  https://doi.org/10.1073/pnas.1510482112.CrossRefGoogle Scholar
  109. Steppan, S., Adkins, R., & Anderson, J. (2004). Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology, 53(4), 533–553.  https://doi.org/10.1080/10635150490468701.PubMedCrossRefGoogle Scholar
  110. Stuart, O., & Landry, J. (1970). The Rodentia as omnivores. The Quarterly Review of Biology, 45(4), 351–372.  https://doi.org/10.1086/406647.CrossRefGoogle Scholar
  111. Swihart, R. K. (1984). Body size, breeding season length, and life history tactics of Lagomorphs. Oikos, 43(3), 282–290.  https://doi.org/10.2307/3544145.CrossRefGoogle Scholar
  112. Team, R. D. C. (2016). R: A language and environment for statistical computing. Vienna: R Core TeamGoogle Scholar
  113. Tomiya, S. (2013). Body size and extinction risk in terrestrial mammals above the species level. The American Naturalist, 182(6), E196–E214.  https://doi.org/10.1086/673489.PubMedCrossRefGoogle Scholar
  114. Tran, L. A. P. (2014). The role of ecological opportunity in shaping disparate diversification trajectories in a bicontinental primate radiation. Proceedings of the Royal Society of London B: Biological Sciences, 281(1781), 20131979.CrossRefGoogle Scholar
  115. Tran, L. A. P. (2016). Interaction between digestive strategy and niche specialization predicts speciation rates across herbivorous mammals. The American Naturalist, 187(4), 468–480.  https://doi.org/10.1086/685094.PubMedCrossRefGoogle Scholar
  116. Vamosi, J. C., Armbruster, W. S., & Renner, S. S. (2014). Evolutionary ecology of specialization: Insights from phylogenetic analysis. Proceedings of the Royal Society of London B: Biological Sciences, 281(1795), 20142004.  https://doi.org/10.1098/rspb.2014.2004.CrossRefGoogle Scholar
  117. Verde Arregoitia, L. D., Fisher, D. O., & Schweizer, M. (2017). Morphology captures diet and locomotor types in rodents. Royal Society Open Science, 4(1), 160957.  https://doi.org/10.1098/rsos.160957.PubMedPubMedCentralCrossRefGoogle Scholar
  118. von Hagen, K. B., & Kadereit, J. W. (2003). The diversification of Halenia (Gentianaceae): Ecological opportunity versus key innovation. Evolution, 57(11), 2507–2518.  https://doi.org/10.1111/j.0014-3820.2003.tb01495.x.CrossRefGoogle Scholar
  119. Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11(1), 192–196.  https://doi.org/10.3758/BF03206482.CrossRefGoogle Scholar
  120. Walker, D. M., Castlebury, L. A., Rossman, A. Y., & Struwe, L. (2014). Host conservatism or host specialization? Patterns of fungal diversification are influenced by host plant specificity in Ophiognomonia (Gnomoniaceae: Diaporthales). Biological Journal of the Linnean Society, 111(1), 1–16.  https://doi.org/10.1111/bij.12189.CrossRefGoogle Scholar
  121. Whittow, G. C. (2013). Comparative physiology of thermoregulation: Mammals. Waltham: Academic Press.Google Scholar
  122. Williams, S., & Kay, R. (2001). A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. Journal of Mammalian Evolution, 8(3), 207–229.  https://doi.org/10.1023/A:1012231829141.CrossRefGoogle Scholar
  123. Wilson, D. S., & Yoshimura, J. (1994). On the coexistence of specialists and generalists. The American Naturalist, 144(4), 692–707.  https://doi.org/10.1086/285702.CrossRefGoogle Scholar
  124. Withers, P. C., Cooper, C. E., Cruz-Neto, A. P., & Bozinovic, F. (2016). Ecological and environmental physiology of mammals. Oxford: Oxford University Press.CrossRefGoogle Scholar
  125. Wollenberg, K. C., Vieites, D. R., Glaw, F., & Vences, M. (2011). Speciation in little: The role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evolutionary Biology, 11(1), 217.  https://doi.org/10.1186/1471-2148-11-217.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesKuwait UniversitySafatKuwait
  2. 2.Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations