Abstract
Freshwater planaria (Platyhelminthes, Turbellaria, Tricladida) pose a challenge to current concepts of biological individuality. We review molecular and developmental evidence suggesting that mature intact planaria are not biological individuals but their totipotent stem cells (neoblasts) are individuals. Neoblasts within a single planarian body are, in particular, genetically heterogeneous, migratory, effectively immortal, and effectively autonomous. They cooperate to maintain the planarian body as an obligate environment but compete to make this environment maximally conducive to the survival of their own neoblast lineages. These results suggest that planaria have not fully completed the transition to multicellularity, but instead represent an intermediate form in which a small number of genetically-heterogeneous, reproductively-competent cells effectively “farm” their reproductively-incompetent offspring.
Similar content being viewed by others
References
Abnave, P., Aboukhatwa, E., Kosaka, N., Thompson, J., Hill, M. A., & Aboobaker, A. A. (2017). Epithelial-mesenchymal transition transcription factors control pluripotent adult stem cell migration in vivo in planarians. Development, 144, 3440–3453. https://doi.org/10.1242/dev.154971.
Aboobaker, A. A. (2011). Planarian stem cells: A simple paradigm for regeneration. Trends in Cell Biology, 21, 304–311. https://doi.org/10.1016/j.tcb.2011.01.005.
Agata, K., & Umesono, Y. (2008). Brain regeneration from pluripotent stem cells in planarian. Philosophical Transactions of the Royal Society B, 363, 2071–2078. https://doi.org/10.1098/rstb.2008.2260.
Aktipis, C. A., Boddy, A. M., Jansen, G., Hibner, U., Hochberg, M. E., Maley, C. C., & Wilkinson, G. S. (2015). Cancer across the tree of life: Cooperation and cheating in multicellularity. Philosophical Transactions of the Royal Society B, 370, 20140219. https://doi.org/10.1098/rstb.2014.0219.
Beane, W. S., Morokuma, J., Adams, D. S., & Levin, M. (2011). A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chemistry & Biology, 18, 77–89. https://doi.org/10.1016/j.chembiol.2010.11.012.
Beane, W. S., Morokuma, J., Lemire, J. M., & Levin, M. (2013). Bioelectric signaling regulates head and organ size during planarian regeneration. Development, 140, 313–322. https://doi.org/10.1242/dev.086900.
Bely, A. E. (2010). Evolutionary loss of animal regeneration: Pattern and process. Integrative and Comparative Biology, 50(4), 515–527. https://doi.org/10.1093/icb/icq118
Davies, E. L., Lei, K., Seidel, C. W., Kroesen, A. E., McKinney, S. A., Guo, L., Robb, S. M. C., Ross, E. J., Gotting, K., & Sánchez Alvarado, A. (2017). Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. eLife, 6, e21052. https://doi.org/10.7554/eLife.21052.
Diaz-Muñoz, S. L., Boddy, A. M., Dantas, G., Waters, C. M., & Bronstein, J. L. (2016). Contextual organismality: Beyond pattern to process in the emergence of organisms. Evolution, 70(12), 2669–2677. https://doi.org/10.1111/evo.13078.
Durant, F., Lobo, D., Hammelman, J., & Levin, M. (2016). Physiological controls of large-scale patterning in planarian regeneration: A molecular and computational perspective on growth and form. Regeneration, 3(2), 78–102. https://doi.org/10.1002/reg2.54.
Durant, F., Morokuma, J., Fields, C., Williams, K., Adams, D. A., & Levin, M. (2017). Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients. Biophysical Journal, 112, 2231–2243. https://doi.org/10.1016/j.bpj.2017.04.011.
Elliott, S. A., & Sánchez Alvarado, A. (2012). The history and enduring contributions of planarians to the study of animal regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2(3), 301–326. https://doi.org/10.1002/wdev.82.
Emmons-Bell, M., Durant, F., Hammelman, J., Bessonov, N., Volpert, V., Morokuma, J., Pinet, K., Adams, D. S., Pietak, A., Lobo, D., & Levin, M. (2015). Gap junctional blockade stochastically induces different species-specific head anatomies in genetically wild-type Girardia dorotocephala flatworms. International Journal of Molecular Sciences, 16, 27865–27896. https://doi.org/10.3390/ijms161126065.
Ermakov, A. M., Ermakov, O. N., Kudravtsev, A. A., & Kreshchenko, N. D. (2012). Study of planarian stem cell proliferation by means of flow cytometry. Molecular Biology Reports, 39(3), 3073–3080. https://doi.org/10.1007/s11033-011-1070-1.
Fields, C., & Levin, M. (2018). Multiscale memory and bioelectric error correction in the cytoplasm–cytoskeleton-membrane system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 10(2), e1410. https://doi.org/10.1002/wsbm.1410.
Fisher, R. M., Cornwallis, C. K., & West, S. A. (2013). Group formation, relatedness, and the evolution of multicellularity. Current Biology, 23(12), 1120–1125. https://doi.org/10.1016/j.cub.2013.05.004.
Folse, H. J. III, & Roughgarden, J. (2010). What is an individual organism? A multilevel selection perspective. The Quarterly Review of Biology, 85(4), 447–472. https://doi.org/10.1086/656905.
Fraguas, S., Barberán, S., & Cebrià, F. (2011). EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Developmental Biology, 354, 87–101. https://doi.org/10.1016/j.ydbio.2011.03.023.
Fraguas, S., Barberán, S., Iglesias, M., Rodríguez-Esteban, G., & Cebrià, F. (2014). egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development, 141, 1835–1847. https://doi.org/10.1242/dev.101345.
Fumagalli, M. R., Zapperi, S., & La Porta, C. A. M. (2017). Regeneration in distantly related species: Common strategies and pathways. NPJ Systems Biology and Applications. https://doi.org/10.1038/s41540-017-0042-z.
Gentile, L., Cebria, F., & Bartscherer, K. (2011). The planarian flatworm: An in vivo model for stem cell biology and nervous system regeneration. Disease Models & Mechanisms, 4, 12–19. https://doi.org/10.1242/dmm.006692.
Guedelhoefer, O. C., & Sánchez Alvarado, A. (2012). Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development, 139, 3510–3520. https://doi.org/10.1242/dev.082099.
Hamilton, W. D. (1964). The genetical theory of social behavior. Journal of Theoretical Biology, 7(1), 1–16. https://doi.org/10.1016/0022-5193(64)90038-4.
Hoshi, M., Kobayashi, K., Arioka, S., Hase, S., & Matsumoto, M. (2003). Switch from asexual to sexual reproduction in the planarian Dugesia ryukyuensis. Integrative and Comparative Biology, 43, 242–246.
Hoshino, K., Ohnisji, K., Yoshida, W., & Shinozawa, T. (1991). Analysis of ploidy in a planarian by flow cytometry. Hydrobiologia, 227(1), 175–178. https://doi.org/10.1093/icb/43.2.242.
Keijzer, F., van Duijn, M., & Lyon, P. (2013). What nervous systems do: Early evolution, input-output, and the skin brain thesis. Adaptive Behavior, 21, 67–85. https://doi.org/10.1177/1059712312465330.
Kenny, N. J., de Goeij, J. M., de Bakker, D. M., Whalen, C. G., Berezikov, E., & Riesgo, A. (2017). Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A Transcriptomic case study in the Demosponge Halisarca caerulea. Marine Genomics. https://doi.org/10.1016/j.margen.2017.11.001.
Knakievicz, T., Lau, A. H., Prá, D., & Erdtmann, B. (2007). Biogeography and karyotypes of freshwater planarians (Platyhelminthes, Tricladida, Paludicola) in southern Brazil. Zoological Science, 24, 123–129. https://doi.org/10.2108/zsj.24.123.
Levin, M., & Martyniuk, C. J. (2017). The bioelectric code: An ancient computational medium for dynamic control of growth and form. Biosystems in press. https://doi.org/10.1016/j.biosystems.2017.08.009.
Levin, M., Pezzulo, G., & Finkelstein, J. M. (2017). Endogenous bioelectric signaling networks: Exploiting voltage gradients for control of growth and form. Annual Review of Biomedical Engineering, 19, 353–387. https://doi.org/10.1146/annurev-bioeng-071114-040647.
Lobo, D., Beane, W. S., & Levin, M. (2012). Modeling planarian regeneration: A primer for reverse-engineering the worm. PLoS Computational Biology, 8(4), ee1002481. https://doi.org/10.1371/journal.pcbi.1002481.
Lobo, D., & Levin, M. (2015). Inferring regulatory networks from experimental morphological phenotypes: A computational method reverse-engineers planarian regeneration. PLoS Computational Biology, 11(6), e1004295.
Lyon, P. (2006). The biogenic approach to cognition. Cognitive Processing, 7, 11–29. https://doi.org/10.1007/s10339-005-0016-8.
Martín-Durán, J. M., Monjo, F., & Romero, R. (2012). Planarian embryology in the era of comparative developmental biology. International Journal of Developmental Biology, 56, 39–48. https://doi.org/10.1387/ijdb.113442jm.
Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. Oxford: W. H. Freeman.
Moltschaniwskyj, N. A., & Carter, C. G. (2013). The adaptive response of protein turnover to the energetic demands of reproduction in a cephalopod. Physiological and Biochemical Zoology, 86, 119–126. https://doi.org/10.1086/667799.
Newmark, P. A., & Sánchez Alvarado, A. (2002). Not your father’s planarian: A classic model enters the era of functional genomics. Nature Reviews Genetics, 3, 210–219. https://doi.org/10.1038/nrg759.
Nishimura, O., Hosoda, K., Kawaguchi, E., Yazawa, S., Hayashi, T., Umesono, Y., & Agata, K. (2015). Unusually large number of mutations in asexually reproducing clonal planarian Dugesia japonica. PLoS ONE, 10(11), e0143525. https://doi.org/10.1371/journal.pone.0143525.
Nodono, H., Ishino, Y., Hoshi, M., & Matsumoto, M. (2012). Stem cells from innate sexual but not acquired sexual planarians have the capability to form a sexual individual. Molecular Reproduction and Development, 79, 757–766. https://doi.org/10.1002/mrd.22109.
Nogi, T., & Levin, M. (2005). Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Developmental biology, 287(2), 314–335. https://doi.org/10.1016/j.ydbio.2005.09.002.
Otto, S. P., & Lenormand, T. (2002). Resolving the paradox of sex and recombination. Nature Reviews Genetics, 3, 252–261. https://doi.org/10.1038/nrg761.
Oviedo, N. J., & Beane, W. S. (2009). Regeneration: The origin of cancer or a possible cure? Seminars in Cell & Developmental Biology, 20, 557–564. https://doi.org/10.1016/j.semcdb.2009.04.005.
Oviedo, N. J., & Levin, M. (2007). smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development, 134, 3121–3131. https://doi.org/10.1242/dev.006635.
Oviedo, N. J., Morokuma, J., Walentek, P., Kema, I. P., Gu, M. B., Ahn, J.-M., Hwang, J. S., Gojobori, T., & Levin, M. (2010). Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Developmental Biology, 339, 188–199. https://doi.org/10.1016/j.ydbio.2009.12.012.
Owlarn, S., & Bartscherer, K. (2016). Go ahead, grow a head! A planarian’s guide to anterior regeneration. Regeneration, 3(3), 139–155. https://doi.org/10.1002/reg2.56.
Pagán, O. R. (2014). The first brain: The neuroscience of planarians. Oxford: Oxford University Press.
Pearson, B. J., & Sánchez Alvarado, A. (2008). Regeneration, stem cells, and the evolution of tumor suppression. Cold Spring Harbor Symposia on Quantitative Biology, 73, 565–572. https://doi.org/10.1101/sqb.2008.73.045.
Pellettieri, J., & Sánchez Alvarado, A. (2007). Cell turnover and adult tissue homeostasis: From humans to planarians. Annual Review of Genetics, 41, 83–105. https://doi.org/10.1146/annurev.genet.41.110306.130244.
Petralia, R. S., Mattson, M. P., & Yao, P. J. (2014). Aging and longevity in the simplest animals and the quest for immortality. Ageing Research Reviews, 16, 66–82. https://doi.org/10.1016/j.arr.2014.05.003.
Pezzulo, G., & Levin, M. (2015). Re-membering the body: Applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs. Integrative Biology, 7, 1487–1517. https://doi.org/10.1039/C5IB00221D.
Pineda-Krch, M., & Lehtilä, K. (2004). Costs and benefits of genetic heterogeneity within organisms. Journal of Evolutionary Biology, 17(6), 1167–1177. https://doi.org/10.1111/j.1420-9101.2004.00808.x.
Queller, D. C., & Strassmann, J. E. (2009). Beyond society: The evolution of organismality. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1533), 3143–3155. https://doi.org/10.1098/rstb.2009.0095.
Rangiah, K., & Palakodeti, D. (2013). Comprehensive analysis of neurotransmitters from regenerating planarian extract using an ultrahigh-performance liquid chromatography/mass spectrometry/selected reaction monitoring method. Rapid Communications in Mass Spectrometry, 27, 2439–2452. https://doi.org/10.1002/rcm.6706.
Rink, J. C. (2013). Stem cell systems and regeneration in planaria. Development Genes and Evolution, 223(1–2), 67–84. https://doi.org/10.1007/s00427-012-0426-4.
Rossi, L., Salvetti, A., Batistoni, R., Deri, P., & Gremigni, V. (2008). Planarians, a tale of stem cells. Cellular and Molecular Life Sciences, 65, 16–23. https://doi.org/10.1007/s00018-007-7426-y.
Saló, E., & Baguñà, J. (1985). Cell movement in intact and regenerating planarians. Quantitation using chromosomal, nuclear and cytoplasmic markers. Journal of Embryology and Experimental Morphology, 89, 57–70.
Sánchez Alvarado, A., & Kang, H. (2005). Multicellularity, stem cells, and the neoblasts of the planarian Schmidtea mediterranea. Experimental Cell Research, 306, 299–308. https://doi.org/10.1016/j.yexcr.2005.03.020.
Sarnat, H. B., & Netsky, M. G. (2002). When does a ganglion become a brain? Evolutionary origin of the central nervous system. Seminars in Pediatric Neurology, 9, 240–253. https://doi.org/10.1053/spen.2002.32502.
Schürmann, W., & Peter, R. (2001). Planarian cell culture: A comparative review of methods and an improved protocol for primary cultures of neoblasts. The Belgian Journal of Zoology, 131(Suppl. 1), 123–130.
Scimone, M. L., Kravarik, K. M., Lapan, S. W., & Reddien, P. W. (2014). Neoblast specialization in regeneration of the planarian Schmidtea mediterranea. Stem Cell Reports, 3(2), 339–352. https://doi.org/10.1016/j.stemcr.2014.06.001.
Seilern-Aspang, F., & Kratochwil, K. (1965). Relation between regeneration and tumor growth. In V. Kiortsis & H. Trampusch (Eds.), Regeneration in animals and related problems (pp. 452–473). Amsterdam: North Holland.
Sikes, J. M., & Newmark, P. A. (2013). Restoration of anterior regeneration in a planarian with limited regenerative ability. Nature, 500(7460), 77–80. https://doi.org/10.1038/nature12403.
Solana, J. (2013). Closing the circle of germline and stem cells: The Primordial Stem Cell hypothesis. EvoDevo. https://doi.org/10.1186/2041-9139-4-2.
Strassmann, J. E., & Queller, D. C. (2010). The social organism: Congresses, parties and committees. Evolution, 64(3), 605–616. https://doi.org/10.1111/j.1558-5646.2009.00929.x.
Stückerman, T., Cleland, J. P., Werner, S., Vu, H. T.-K., Bayersdorf, R., Liu, S.-Y., Friedrich, B., Jülicher, F., & Rink, J. C. (2017). Antagonistic self-organizing patterning systems control maintenance and regeneration of the anteroposterior axis in planarians. Developmental Cell, 40, 248–263. https://doi.org/10.1016/j.devcel.2016.12.024.
Szathmáry, E. (2015). Toward major evolutionary transitions theory 2.0. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10104–10111. https://doi.org/10.1073/pnas.1421398112.
Tiozzo, S., & Copley, R. R. (2016). Reconsidering regeneration in metazoans: An evo-devo approach. Frontiers in Ecology and Evolution, 3, 67. https://doi.org/10.3389/fevo.2015.00067.
Umesono, Y., & Agata, K. (2009). Evolution and regeneration of the planarian central nervous system. Development, Growth & Differentiation, 51, 185–195. https://doi.org/10.1111/j.1440-169X.2009.01099.x.
van Wolfswinkle, J. C., Wagner, D. E., & Reddien, P. W. (2014). Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell, 15, 326–339. https://doi.org/10.1016/j.stem.2014.06.007.
Wagner, D. E., Wang, I. E., & Reddien, P. W. (2011). Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science, 332(6031), 811–816. https://doi.org/10.1126/science.1203983.
West, S. A., Fisher, R. M., Gardner, A., & Kiers, E. T. (2015). Major evolutionary transitions in individuality. Proc. Natl. Acad. Sci. USA 112(33), 10112–10119. https://doi.org/10.1073/pnas.1421402112.
West, S. A., & Kiers, E. T. (2009). Evolution: What is an organism? Current Biology, 19(23), R1080-R1082. https://doi.org/10.1016/j.cub.2009.10.048.
Zattara, E. E. (2015). Transplants in annelids, nemerteans and planarians: A tool for embryology, immunology, endocrinology and regeneration research. Invertebrate Survival Journal, 12, 247–263.
Zattara, E. E., & Bely, A. E. (2016). Phylogenetic distribution of regeneration and asexual reproduction in Annelida: Regeneration is ancestral and fission evolves in regenerative clades. Invert. Biol., 135(4), 400–414. https://doi.org/10.1111/ivb.12151.
Zhu, S. J., & Pearson, B. J. (2016). Neo)blast from the past: New insights into planarian stem cell lineages. Curr. Opin. Genet. Devel., 40, 74–80. https://doi.org/10.1016/j.gde.2016.06.007.
Acknowledgements
We thank A. Aboobaker for useful discussions. This research was supported by the Allen Discovery Center program through The Paul G. Allen Frontiers Group (12171). In addition, M. L. gratefully acknowledges support of the G. Harold and Leila Y. Mathers Charitable Foundation (TFU141) and the Templeton World Charity Foundation (TWCF0089/AB55 and TWCF0140).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they are aware of no potential conflicts, financial or otherwise, pertaining to this work.
Rights and permissions
About this article
Cite this article
Fields, C., Levin, M. Are Planaria Individuals? What Regenerative Biology is Telling Us About the Nature of Multicellularity. Evol Biol 45, 237–247 (2018). https://doi.org/10.1007/s11692-018-9448-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11692-018-9448-9