Advertisement

Are Planaria Individuals? What Regenerative Biology is Telling Us About the Nature of Multicellularity

Synthesis Paper

Abstract

Freshwater planaria (Platyhelminthes, Turbellaria, Tricladida) pose a challenge to current concepts of biological individuality. We review molecular and developmental evidence suggesting that mature intact planaria are not biological individuals but their totipotent stem cells (neoblasts) are individuals. Neoblasts within a single planarian body are, in particular, genetically heterogeneous, migratory, effectively immortal, and effectively autonomous. They cooperate to maintain the planarian body as an obligate environment but compete to make this environment maximally conducive to the survival of their own neoblast lineages. These results suggest that planaria have not fully completed the transition to multicellularity, but instead represent an intermediate form in which a small number of genetically-heterogeneous, reproductively-competent cells effectively “farm” their reproductively-incompetent offspring.

Keywords

Bioelectricity Cooperation Dugesia japonica Dugesia ryukyuensis Germ cells Girardia tigrina Regeneration Schmidtea mediterranea Stem cells 

Notes

Acknowledgements

We thank A. Aboobaker for useful discussions. This research was supported by the Allen Discovery Center program through The Paul G. Allen Frontiers Group (12171). In addition, M. L. gratefully acknowledges support of the G. Harold and Leila Y. Mathers Charitable Foundation (TFU141) and the Templeton World Charity Foundation (TWCF0089/AB55 and TWCF0140).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they are aware of no potential conflicts, financial or otherwise, pertaining to this work.

References

  1. Abnave, P., Aboukhatwa, E., Kosaka, N., Thompson, J., Hill, M. A., & Aboobaker, A. A. (2017). Epithelial-mesenchymal transition transcription factors control pluripotent adult stem cell migration in vivo in planarians. Development, 144, 3440–3453.  https://doi.org/10.1242/dev.154971.CrossRefPubMedGoogle Scholar
  2. Aboobaker, A. A. (2011). Planarian stem cells: A simple paradigm for regeneration. Trends in Cell Biology, 21, 304–311.  https://doi.org/10.1016/j.tcb.2011.01.005.CrossRefPubMedGoogle Scholar
  3. Agata, K., & Umesono, Y. (2008). Brain regeneration from pluripotent stem cells in planarian. Philosophical Transactions of the Royal Society B, 363, 2071–2078.  https://doi.org/10.1098/rstb.2008.2260.CrossRefGoogle Scholar
  4. Aktipis, C. A., Boddy, A. M., Jansen, G., Hibner, U., Hochberg, M. E., Maley, C. C., & Wilkinson, G. S. (2015). Cancer across the tree of life: Cooperation and cheating in multicellularity. Philosophical Transactions of the Royal Society B, 370, 20140219.  https://doi.org/10.1098/rstb.2014.0219.CrossRefGoogle Scholar
  5. Beane, W. S., Morokuma, J., Adams, D. S., & Levin, M. (2011). A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chemistry & Biology, 18, 77–89.  https://doi.org/10.1016/j.chembiol.2010.11.012.CrossRefGoogle Scholar
  6. Beane, W. S., Morokuma, J., Lemire, J. M., & Levin, M. (2013). Bioelectric signaling regulates head and organ size during planarian regeneration. Development, 140, 313–322.  https://doi.org/10.1242/dev.086900.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bely, A. E. (2010). Evolutionary loss of animal regeneration: Pattern and process. Integrative and Comparative Biology, 50(4), 515–527.  https://doi.org/10.1093/icb/icq118 CrossRefPubMedGoogle Scholar
  8. Davies, E. L., Lei, K., Seidel, C. W., Kroesen, A. E., McKinney, S. A., Guo, L., Robb, S. M. C., Ross, E. J., Gotting, K., & Sánchez Alvarado, A. (2017). Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. eLife, 6, e21052.  https://doi.org/10.7554/eLife.21052.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Diaz-Muñoz, S. L., Boddy, A. M., Dantas, G., Waters, C. M., & Bronstein, J. L. (2016). Contextual organismality: Beyond pattern to process in the emergence of organisms. Evolution, 70(12), 2669–2677.  https://doi.org/10.1111/evo.13078.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Durant, F., Lobo, D., Hammelman, J., & Levin, M. (2016). Physiological controls of large-scale patterning in planarian regeneration: A molecular and computational perspective on growth and form. Regeneration, 3(2), 78–102.  https://doi.org/10.1002/reg2.54.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Durant, F., Morokuma, J., Fields, C., Williams, K., Adams, D. A., & Levin, M. (2017). Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients. Biophysical Journal, 112, 2231–2243.  https://doi.org/10.1016/j.bpj.2017.04.011.CrossRefPubMedGoogle Scholar
  12. Elliott, S. A., & Sánchez Alvarado, A. (2012). The history and enduring contributions of planarians to the study of animal regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2(3), 301–326.  https://doi.org/10.1002/wdev.82.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Emmons-Bell, M., Durant, F., Hammelman, J., Bessonov, N., Volpert, V., Morokuma, J., Pinet, K., Adams, D. S., Pietak, A., Lobo, D., & Levin, M. (2015). Gap junctional blockade stochastically induces different species-specific head anatomies in genetically wild-type Girardia dorotocephala flatworms. International Journal of Molecular Sciences, 16, 27865–27896.  https://doi.org/10.3390/ijms161126065.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ermakov, A. M., Ermakov, O. N., Kudravtsev, A. A., & Kreshchenko, N. D. (2012). Study of planarian stem cell proliferation by means of flow cytometry. Molecular Biology Reports, 39(3), 3073–3080.  https://doi.org/10.1007/s11033-011-1070-1.CrossRefPubMedGoogle Scholar
  15. Fields, C., & Levin, M. (2018). Multiscale memory and bioelectric error correction in the cytoplasm–cytoskeleton-membrane system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 10(2), e1410.  https://doi.org/10.1002/wsbm.1410.Google Scholar
  16. Fisher, R. M., Cornwallis, C. K., & West, S. A. (2013). Group formation, relatedness, and the evolution of multicellularity. Current Biology, 23(12), 1120–1125.  https://doi.org/10.1016/j.cub.2013.05.004.CrossRefPubMedGoogle Scholar
  17. Folse, H. J. III, & Roughgarden, J. (2010). What is an individual organism? A multilevel selection perspective. The Quarterly Review of Biology, 85(4), 447–472.  https://doi.org/10.1086/656905.CrossRefPubMedGoogle Scholar
  18. Fraguas, S., Barberán, S., & Cebrià, F. (2011). EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Developmental Biology, 354, 87–101.  https://doi.org/10.1016/j.ydbio.2011.03.023.CrossRefPubMedGoogle Scholar
  19. Fraguas, S., Barberán, S., Iglesias, M., Rodríguez-Esteban, G., & Cebrià, F. (2014). egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development, 141, 1835–1847.  https://doi.org/10.1242/dev.101345.CrossRefPubMedGoogle Scholar
  20. Fumagalli, M. R., Zapperi, S., & La Porta, C. A. M. (2017). Regeneration in distantly related species: Common strategies and pathways. NPJ Systems Biology and Applications.  https://doi.org/10.1038/s41540-017-0042-z.Google Scholar
  21. Gentile, L., Cebria, F., & Bartscherer, K. (2011). The planarian flatworm: An in vivo model for stem cell biology and nervous system regeneration. Disease Models & Mechanisms, 4, 12–19.  https://doi.org/10.1242/dmm.006692.CrossRefGoogle Scholar
  22. Guedelhoefer, O. C., & Sánchez Alvarado, A. (2012). Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development, 139, 3510–3520.  https://doi.org/10.1242/dev.082099.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hamilton, W. D. (1964). The genetical theory of social behavior. Journal of Theoretical Biology, 7(1), 1–16.  https://doi.org/10.1016/0022-5193(64)90038-4.CrossRefPubMedGoogle Scholar
  24. Hoshi, M., Kobayashi, K., Arioka, S., Hase, S., & Matsumoto, M. (2003). Switch from asexual to sexual reproduction in the planarian Dugesia ryukyuensis. Integrative and Comparative Biology, 43, 242–246.CrossRefPubMedGoogle Scholar
  25. Hoshino, K., Ohnisji, K., Yoshida, W., & Shinozawa, T. (1991). Analysis of ploidy in a planarian by flow cytometry. Hydrobiologia, 227(1), 175–178.  https://doi.org/10.1093/icb/43.2.242.CrossRefGoogle Scholar
  26. Keijzer, F., van Duijn, M., & Lyon, P. (2013). What nervous systems do: Early evolution, input-output, and the skin brain thesis. Adaptive Behavior, 21, 67–85.  https://doi.org/10.1177/1059712312465330.CrossRefGoogle Scholar
  27. Kenny, N. J., de Goeij, J. M., de Bakker, D. M., Whalen, C. G., Berezikov, E., & Riesgo, A. (2017). Towards the identification of ancestrally shared regenerative mechanisms across the Metazoa: A Transcriptomic case study in the Demosponge Halisarca caerulea. Marine Genomics.  https://doi.org/10.1016/j.margen.2017.11.001.PubMedGoogle Scholar
  28. Knakievicz, T., Lau, A. H., Prá, D., & Erdtmann, B. (2007). Biogeography and karyotypes of freshwater planarians (Platyhelminthes, Tricladida, Paludicola) in southern Brazil. Zoological Science, 24, 123–129.  https://doi.org/10.2108/zsj.24.123.CrossRefPubMedGoogle Scholar
  29. Levin, M., & Martyniuk, C. J. (2017). The bioelectric code: An ancient computational medium for dynamic control of growth and form. Biosystems in press.  https://doi.org/10.1016/j.biosystems.2017.08.009.
  30. Levin, M., Pezzulo, G., & Finkelstein, J. M. (2017). Endogenous bioelectric signaling networks: Exploiting voltage gradients for control of growth and form. Annual Review of Biomedical Engineering, 19, 353–387.  https://doi.org/10.1146/annurev-bioeng-071114-040647.CrossRefPubMedGoogle Scholar
  31. Lobo, D., Beane, W. S., & Levin, M. (2012). Modeling planarian regeneration: A primer for reverse-engineering the worm. PLoS Computational Biology, 8(4), ee1002481.  https://doi.org/10.1371/journal.pcbi.1002481.CrossRefGoogle Scholar
  32. Lobo, D., & Levin, M. (2015). Inferring regulatory networks from experimental morphological phenotypes: A computational method reverse-engineers planarian regeneration. PLoS Computational Biology, 11(6), e1004295.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lyon, P. (2006). The biogenic approach to cognition. Cognitive Processing, 7, 11–29.  https://doi.org/10.1007/s10339-005-0016-8.CrossRefPubMedGoogle Scholar
  34. Martín-Durán, J. M., Monjo, F., & Romero, R. (2012). Planarian embryology in the era of comparative developmental biology. International Journal of Developmental Biology, 56, 39–48.  https://doi.org/10.1387/ijdb.113442jm.CrossRefPubMedGoogle Scholar
  35. Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. Oxford: W. H. Freeman.Google Scholar
  36. Moltschaniwskyj, N. A., & Carter, C. G. (2013). The adaptive response of protein turnover to the energetic demands of reproduction in a cephalopod. Physiological and Biochemical Zoology, 86, 119–126.  https://doi.org/10.1086/667799.CrossRefPubMedGoogle Scholar
  37. Newmark, P. A., & Sánchez Alvarado, A. (2002). Not your father’s planarian: A classic model enters the era of functional genomics. Nature Reviews Genetics, 3, 210–219.  https://doi.org/10.1038/nrg759.CrossRefPubMedGoogle Scholar
  38. Nishimura, O., Hosoda, K., Kawaguchi, E., Yazawa, S., Hayashi, T., Umesono, Y., & Agata, K. (2015). Unusually large number of mutations in asexually reproducing clonal planarian Dugesia japonica. PLoS ONE, 10(11), e0143525.  https://doi.org/10.1371/journal.pone.0143525.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nodono, H., Ishino, Y., Hoshi, M., & Matsumoto, M. (2012). Stem cells from innate sexual but not acquired sexual planarians have the capability to form a sexual individual. Molecular Reproduction and Development, 79, 757–766.  https://doi.org/10.1002/mrd.22109.CrossRefPubMedGoogle Scholar
  40. Nogi, T., & Levin, M. (2005). Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Developmental biology, 287(2), 314–335.  https://doi.org/10.1016/j.ydbio.2005.09.002.CrossRefPubMedGoogle Scholar
  41. Otto, S. P., & Lenormand, T. (2002). Resolving the paradox of sex and recombination. Nature Reviews Genetics, 3, 252–261.  https://doi.org/10.1038/nrg761.CrossRefPubMedGoogle Scholar
  42. Oviedo, N. J., & Beane, W. S. (2009). Regeneration: The origin of cancer or a possible cure? Seminars in Cell & Developmental Biology, 20, 557–564.  https://doi.org/10.1016/j.semcdb.2009.04.005.CrossRefGoogle Scholar
  43. Oviedo, N. J., & Levin, M. (2007). smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development, 134, 3121–3131.  https://doi.org/10.1242/dev.006635.CrossRefPubMedGoogle Scholar
  44. Oviedo, N. J., Morokuma, J., Walentek, P., Kema, I. P., Gu, M. B., Ahn, J.-M., Hwang, J. S., Gojobori, T., & Levin, M. (2010). Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Developmental Biology, 339, 188–199.  https://doi.org/10.1016/j.ydbio.2009.12.012.CrossRefPubMedGoogle Scholar
  45. Owlarn, S., & Bartscherer, K. (2016). Go ahead, grow a head! A planarian’s guide to anterior regeneration. Regeneration, 3(3), 139–155.  https://doi.org/10.1002/reg2.56.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pagán, O. R. (2014). The first brain: The neuroscience of planarians. Oxford: Oxford University Press.Google Scholar
  47. Pearson, B. J., & Sánchez Alvarado, A. (2008). Regeneration, stem cells, and the evolution of tumor suppression. Cold Spring Harbor Symposia on Quantitative Biology, 73, 565–572.  https://doi.org/10.1101/sqb.2008.73.045.CrossRefPubMedGoogle Scholar
  48. Pellettieri, J., & Sánchez Alvarado, A. (2007). Cell turnover and adult tissue homeostasis: From humans to planarians. Annual Review of Genetics, 41, 83–105.  https://doi.org/10.1146/annurev.genet.41.110306.130244.CrossRefPubMedGoogle Scholar
  49. Petralia, R. S., Mattson, M. P., & Yao, P. J. (2014). Aging and longevity in the simplest animals and the quest for immortality. Ageing Research Reviews, 16, 66–82.  https://doi.org/10.1016/j.arr.2014.05.003.CrossRefPubMedGoogle Scholar
  50. Pezzulo, G., & Levin, M. (2015). Re-membering the body: Applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs. Integrative Biology, 7, 1487–1517.  https://doi.org/10.1039/C5IB00221D.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pineda-Krch, M., & Lehtilä, K. (2004). Costs and benefits of genetic heterogeneity within organisms. Journal of Evolutionary Biology, 17(6), 1167–1177.  https://doi.org/10.1111/j.1420-9101.2004.00808.x.CrossRefPubMedGoogle Scholar
  52. Queller, D. C., & Strassmann, J. E. (2009). Beyond society: The evolution of organismality. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1533), 3143–3155.  https://doi.org/10.1098/rstb.2009.0095.CrossRefGoogle Scholar
  53. Rangiah, K., & Palakodeti, D. (2013). Comprehensive analysis of neurotransmitters from regenerating planarian extract using an ultrahigh-performance liquid chromatography/mass spectrometry/selected reaction monitoring method. Rapid Communications in Mass Spectrometry, 27, 2439–2452.  https://doi.org/10.1002/rcm.6706.CrossRefPubMedGoogle Scholar
  54. Rink, J. C. (2013). Stem cell systems and regeneration in planaria. Development Genes and Evolution, 223(1–2), 67–84.  https://doi.org/10.1007/s00427-012-0426-4.CrossRefPubMedGoogle Scholar
  55. Rossi, L., Salvetti, A., Batistoni, R., Deri, P., & Gremigni, V. (2008). Planarians, a tale of stem cells. Cellular and Molecular Life Sciences, 65, 16–23.  https://doi.org/10.1007/s00018-007-7426-y.CrossRefPubMedGoogle Scholar
  56. Saló, E., & Baguñà, J. (1985). Cell movement in intact and regenerating planarians. Quantitation using chromosomal, nuclear and cytoplasmic markers. Journal of Embryology and Experimental Morphology, 89, 57–70.PubMedGoogle Scholar
  57. Sánchez Alvarado, A., & Kang, H. (2005). Multicellularity, stem cells, and the neoblasts of the planarian Schmidtea mediterranea. Experimental Cell Research, 306, 299–308.  https://doi.org/10.1016/j.yexcr.2005.03.020.CrossRefPubMedGoogle Scholar
  58. Sarnat, H. B., & Netsky, M. G. (2002). When does a ganglion become a brain? Evolutionary origin of the central nervous system. Seminars in Pediatric Neurology, 9, 240–253.  https://doi.org/10.1053/spen.2002.32502.CrossRefPubMedGoogle Scholar
  59. Schürmann, W., & Peter, R. (2001). Planarian cell culture: A comparative review of methods and an improved protocol for primary cultures of neoblasts. The Belgian Journal of Zoology, 131(Suppl. 1), 123–130.Google Scholar
  60. Scimone, M. L., Kravarik, K. M., Lapan, S. W., & Reddien, P. W. (2014). Neoblast specialization in regeneration of the planarian Schmidtea mediterranea. Stem Cell Reports, 3(2), 339–352.  https://doi.org/10.1016/j.stemcr.2014.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Seilern-Aspang, F., & Kratochwil, K. (1965). Relation between regeneration and tumor growth. In V. Kiortsis & H. Trampusch (Eds.), Regeneration in animals and related problems (pp. 452–473). Amsterdam: North Holland.Google Scholar
  62. Sikes, J. M., & Newmark, P. A. (2013). Restoration of anterior regeneration in a planarian with limited regenerative ability. Nature, 500(7460), 77–80.  https://doi.org/10.1038/nature12403.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Solana, J. (2013). Closing the circle of germline and stem cells: The Primordial Stem Cell hypothesis. EvoDevo.  https://doi.org/10.1186/2041-9139-4-2.PubMedPubMedCentralGoogle Scholar
  64. Strassmann, J. E., & Queller, D. C. (2010). The social organism: Congresses, parties and committees. Evolution, 64(3), 605–616.  https://doi.org/10.1111/j.1558-5646.2009.00929.x.CrossRefPubMedGoogle Scholar
  65. Stückerman, T., Cleland, J. P., Werner, S., Vu, H. T.-K., Bayersdorf, R., Liu, S.-Y., Friedrich, B., Jülicher, F., & Rink, J. C. (2017). Antagonistic self-organizing patterning systems control maintenance and regeneration of the anteroposterior axis in planarians. Developmental Cell, 40, 248–263.  https://doi.org/10.1016/j.devcel.2016.12.024.CrossRefGoogle Scholar
  66. Szathmáry, E. (2015). Toward major evolutionary transitions theory 2.0. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10104–10111.  https://doi.org/10.1073/pnas.1421398112.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tiozzo, S., & Copley, R. R. (2016). Reconsidering regeneration in metazoans: An evo-devo approach. Frontiers in Ecology and Evolution, 3, 67.  https://doi.org/10.3389/fevo.2015.00067.Google Scholar
  68. Umesono, Y., & Agata, K. (2009). Evolution and regeneration of the planarian central nervous system. Development, Growth & Differentiation, 51, 185–195.  https://doi.org/10.1111/j.1440-169X.2009.01099.x.CrossRefGoogle Scholar
  69. van Wolfswinkle, J. C., Wagner, D. E., & Reddien, P. W. (2014). Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell, 15, 326–339.  https://doi.org/10.1016/j.stem.2014.06.007.CrossRefGoogle Scholar
  70. Wagner, D. E., Wang, I. E., & Reddien, P. W. (2011). Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science, 332(6031), 811–816.  https://doi.org/10.1126/science.1203983.CrossRefPubMedPubMedCentralGoogle Scholar
  71. West, S. A., Fisher, R. M., Gardner, A., & Kiers, E. T. (2015). Major evolutionary transitions in individuality. Proc. Natl. Acad. Sci. USA 112(33), 10112–10119.  https://doi.org/10.1073/pnas.1421402112.
  72. West, S. A., & Kiers, E. T. (2009). Evolution: What is an organism? Current Biology, 19(23), R1080-R1082.  https://doi.org/10.1016/j.cub.2009.10.048.CrossRefGoogle Scholar
  73. Zattara, E. E. (2015). Transplants in annelids, nemerteans and planarians: A tool for embryology, immunology, endocrinology and regeneration research. Invertebrate Survival Journal, 12, 247–263.Google Scholar
  74. Zattara, E. E., & Bely, A. E. (2016). Phylogenetic distribution of regeneration and asexual reproduction in Annelida: Regeneration is ancestral and fission evolves in regenerative clades. Invert. Biol., 135(4), 400–414.  https://doi.org/10.1111/ivb.12151.CrossRefGoogle Scholar
  75. Zhu, S. J., & Pearson, B. J. (2016). Neo)blast from the past: New insights into planarian stem cell lineages. Curr. Opin. Genet. Devel., 40, 74–80.  https://doi.org/10.1016/j.gde.2016.06.007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Caunes MinervoisFrance
  2. 2.Allen Discovery Center at Tufts UniversityMedfordUSA

Personalised recommendations