Skip to main content
Log in

Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We should stress that this historiographic account is not exempt of criticism. Two critical appraisals, among many others, are found in Amundson (2005) and Delisle (2011).

  2. However, in his recent book Eternal Ephemera: Adaptation and the Origin of Species from the Nineteenth Century Through Punctuated Equilibria and Beyond, Niles Eldredge (2015) claimed that the HTE is much older: it goes back to the early decades of the nineteenth century, with the pioneering contributions of Jean-Baptiste Lamarck and Giambattista Brocchi, among others (see also Eldredge 2016).

  3. We should clarify that, for Eldredge, these hierarchies are only analogous to the biological hierarchies, with no ontological equivalency.

  4. This aspect of the comparison between the HTE and the EES was pointed out by an anonymous reviewer.

References

  • Alberch, P., Gould, S. J., Oster, G. F., & Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology, 5, 296–317.

    Article  Google Scholar 

  • Allmon, W. D. (2016). Coming to terms with tempo and mode. Speciation, anagenesis, and assessing relative frequencies in macroevolution. In N. Eldredge, T. Pievani, E. M. Serrelli & I. Tëmkin (Eds.), Evolutionary theory: A hierarchical perspective (pp. 260–281). Chicago: University of Chicago Press.

    Google Scholar 

  • Amundson, R. (2001). Adaptation and development: On the lack of common ground. In S. Orzack & E. Sober (Eds.), Adaptationism and optimality (pp. 303–334). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Amundson, R. (2005). The changing role of the embryo in evolutionary thought. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Badyaev, A. V., & Uller, T. (2009). Parental effects in ecology and evolution: Mechanisms, processes and implications. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 1169–1177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bateson, P. (2005). The return of the whole organism. Journal of Biosciences, 30, 31–39.

    Article  PubMed  Google Scholar 

  • Beatty, J. (1986). The synthesis and the synthetic theory. In W. Bechtel (Ed.), Integrating scientific disciplines (pp. 125–135). Dordrecht: Martinus Nijhoff Publishers.

    Chapter  Google Scholar 

  • Bertolaso, M., & Buzzoni, M. (2017). Causality and levels of explanation in biology. In M. Paolini-Paoletti & F. Orilia (Eds.), Philosophical and scientific levels of downward causation (pp. 164–179). New York: Routledge.

    Google Scholar 

  • Blute, M. (2015). Modes of variation and their implications for an extended evolutionary synthesis. In J. H. Turner, R. Machalek & A. Maryanski (Eds.), Handbook on evolution and society: toward and evolutionary social science (pp. 59–75). Boulder: Paradigm Publishers.

    Google Scholar 

  • Bowler, P. J. (1983). The eclipse of darwinism: Anti-Darwinian evolutionary theories in the decades around 1900. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Caianiello, S. (2016). Revisiting the phenotypic hierarchy in hierarchy theory. In N. Eldredge, T. Pievani, E. M. Serrelli & I. Tëmkin (Eds.), Evolutionary theory: A hierarchical perspective (pp. 151–173). Chicago: University of Chicago Press.

    Google Scholar 

  • Campbell, D. T. (1974). ‘Downward Causation’ in hierarchically organized biological systems. In F. Ayala & T. Dobzhansky (Eds.), Studies in the philosophy of biology: Reduction and related problems (pp. 179–186). Berkeley: University of California Press.

    Chapter  Google Scholar 

  • Cooper, G. J., El-Hani, C. N., & Nunes-Neto, N. F. (2016). Three approaches to the teleological and normative aspects of ecological functions. In N. Eldredge, T. Pievani, E. M. Serrelli & I. Tëmkin (Eds.), Evolutionary theory: A hierarchical perspective (pp. 103–124). Chicago: University of Chicago Press.

    Google Scholar 

  • Danchin, E., Charmantier, A., Champagne, F. A., Mesoudi, A., Pujol, B., & Blanchet, S. (2011). Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nature Reviews. Genetics, 12, 475–486.

    Article  CAS  PubMed  Google Scholar 

  • Delisle, R. G. (2011). What was really synthesized during the evolutionary synthesis? A historiographic proposal. Studies in History and Philosophy of Biological and Biomedical Sciences, 42, 50–59.

    Article  PubMed  Google Scholar 

  • Denton, M. J., Kumaramanickavel, G., & Legge, M. (2013). Cells as irreducible wholes: The failure of mechanism and the possibility of an organicist revival. Biology and Philosophy, 28, 31–52.

    Article  Google Scholar 

  • Depew, D. J., & Weber, B. H. (2013). Challenging darwinism: Expanding, extending, replacing. In M. Ruse (Ed.), The Cambridge Encyclopedia of Darwin and Evolutionary Thought (pp. 405–411). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Dieckmann, U., & Doebeli, M. (2005). Pluralism in evolutionary theory. Journal of Evolutionary Biology, 18, 1209–1213.

    Article  CAS  PubMed  Google Scholar 

  • Eldredge, N. (1985). Unfinished synthesis. Biological hierarchies and modern evolutionary thought. New York: Columbia University Press.

    Google Scholar 

  • Eldredge, N. (1986). Information, economics and evolution. Annual Review of Ecology and Systematics, 17, 351–369.

    Article  Google Scholar 

  • Eldredge, N. (2000). Biological and material cultural evolution: Are there any true parallels? In F. Tonneau & N. S. Thompson (Eds.), Perspectives in ethology, volume 13: Evolution, culture, and behavior (pp. 113–153). New York: Kluwer Academic/Plenum Publishers.

    Chapter  Google Scholar 

  • Eldredge, N. (2003). The sloshing bucket: How the physical realm controls evolution. In J. P. Crutchfield & P. Schuster (Eds.), Evolutionary dynamics: Exploring the interplay of selection, accident, neutrality, and function (pp. 3–32). Oxford: Oxford University Press.

    Google Scholar 

  • Eldredge, N. (2008). Hierarchies and the sloshing bucket: Toward the unification of evolutionary biology. Evolution: Education and Outreach, 1, 10–15.

    Google Scholar 

  • Eldredge, N. (2015). Eternal ephemera: Adaptation and the origin of species from the nineteenth century through punctuated equilibria and beyond. New York: Columbia University Press.

    Book  Google Scholar 

  • Eldredge, N. (2016). The checkered career of hierarchical thinking in evolutionary biology. In N. Eldredge, T. Pievani, E. M. Serrelli & I. Tëmkin (Eds.), Evolutionary theory: A hierarchical perspective (pp. 1–16). Chicago: University of Chicago Press.

    Chapter  Google Scholar 

  • Eldredge, N., Pievani, T., Serrelli, E. M., & Tëmkin, I. (Eds.). (2016). Evolutionary theory: A hierarchical perspective. Chicago: University of Chicago Press.

    Google Scholar 

  • Eldredge, N., Thompson, J. N., Brakefield, P. M., Gavrilets, S., Jablonski, D., Jackson, J. B. C., et al. (2005). The dynamics of evolutionary stasis. Paleobiology, 31, 133–145.

    Article  Google Scholar 

  • Etxeberria, A., & Umerez, J. (2006). Organización y Organismo en la Biología Teórica. ¿Vuelta al Organicismo? Ludus Vitalis, 14, 3–38.

    Google Scholar 

  • Fuentes, A. (2016). The extended evolutionary synthesis, etnography, and the human niche: Toward an integrated anthropology. Current Anthropology, 57, S13–S26.

    Article  Google Scholar 

  • Futuyma, D. J. (2015). Can modern evolutionary theory explain macroevolution? In E. Serrelli & N. Gontier (Eds.), Macroevolution. Explanation, interpretation and evidence (pp. 29–85). Switzerland: Springer International Publishing.

    Google Scholar 

  • Gilbert, S. F., & Sarkar, S. (2000). Embracing complexity: Organicism for the 21st century. Developmental Dynamics, 219, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Godfrey-Smith, P. (1996). Complexity and the function of mind in nature. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge: Harvard University Press.

    Google Scholar 

  • Gould, S. J. (1982). Darwinism and the expansion of evolutionary theory. Science, 216, 380–387.

    Article  CAS  PubMed  Google Scholar 

  • Grantham, T. A. (2004). The role of fossils in phylogeny reconstruction, or why is it difficult to integrate paleontological and neontological evolutionary biology? Biology and Philosophy, 19, 687–720.

    Article  Google Scholar 

  • Hull, D. L. (1980). Individuality and Selection. Annual Review of Ecology and Systematics, 11, 311–332.

    Article  Google Scholar 

  • Griesemer, J. (2000). The units of evolutionary transition. Selection, 1, 67–80.

    Article  Google Scholar 

  • Griesemer, J. (2002). What is ‘Epi’ about epigenetics? Annals of the New York Academy of Sciences, 981, 97–110.

    Article  PubMed  Google Scholar 

  • Ingold, T. (1990). An anthropologist looks at biology. Man, 25, 208–229.

    Article  Google Scholar 

  • Ingold, T. (2004). Beyond biology and culture. The meaning of evolution in a relational world. Social Anthropology, 12, 209–221.

    Article  Google Scholar 

  • Jablonka, E., & Lamb, M. J. (2007). Précis of evolution in four dimensions. The Behavioral and Brain Sciences, 30, 353–389.

    PubMed  Google Scholar 

  • Jablonka, E., & Lamb, M. J. (2008). Soft inheritance: Challenging the modern synthesis. Genetics and Molecular Biology, 31, 389–395.

    Article  Google Scholar 

  • Jablonka, E., & Lamb, M. J. (2014). Evolution in four dimensions. Genetic, epigenetic, behavioral, and symbolic variation in the history of life (revised edition). Cambridge: The MIT Press.

    Google Scholar 

  • Kemp, T. S. (1989). The problem of the palaeontological evidence. In M. Keynes & G. A. Harrison (Eds.), Evolutionary studies: A centenary celebration of the life of Julian Huxley (pp. 80–95). Hong Kong: The MacMillian Press.

    Chapter  Google Scholar 

  • Kemp, T. S. (1999). Fossils and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Kirschner, M. W., & Gerhart, J. C. (2005). The Plausibility of Life: Resolving Darwin’s Dilemma. New Haven: Yale University Press.

    Google Scholar 

  • Laland, K., Matthews, B., & Feldman, M. W. (2016). An introduction to niche construction theory. Evolutionary Ecology, 30, 191–202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laland, K. N., Odling-Smee, F. J., & Feldman, M. W. (1999). Evolutionary consequences of niche construction and their implications for ecology. Proceedings of the National Academy of Sciences of the United States of America, 96, 10242–11024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laland, K. N., Odling-Smee, J., Hoppitt, W., & Uller, T. (2013). More on how and why: Cause and effect in biology revisited. Biology and Philosophy, 28, 719–745.

    Article  Google Scholar 

  • Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W., & Uller, T. (2011). Cause and effect in biology revisited: Is Mayr’s proximate-ultimate dichotomy still useful? Science, 334, 1512–1516.

    Article  CAS  PubMed  Google Scholar 

  • Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., et al. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of the Royal Society of London. Series B: Biological Sciences, 282, 20151019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laland, K., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., et al. (2014). Does evolutionary theory need a rethink? Nature, 514, 161–164.

    Article  CAS  PubMed  Google Scholar 

  • Laubichler, M. D. (2010). Evolutionary developmental biology offers a significant challenge to the Neo-Darwinian Paradigm. In F. J. Ayala & R. A. Malden (Eds.), Contemporary debates in philosophy in biology (pp. 199–212). Massachussetts: Wiley-Blackwell.

    Google Scholar 

  • Lieberman, B. S. (2016). Pattern versus process and hierarchies. Revisiting eternal metaphors in macroevolutionary theory. In N. Eldredge, T. Pievani, E. M. Serrelli & I. Tëmkin (Eds.), Evolutionary theory: A hierarchical perspective (pp. 29–46). Chicago: University of Chicago Press.

    Google Scholar 

  • Lieberman, B. S., Miller, W. III, & Eldredge, N. (2007). Paleontological patterns, macroecological dynamics and the evolutionary process. Evolutionary Biology, 34, 28–48.

    Article  Google Scholar 

  • Love, A. C. (2017). Evo-devo and the structure(s) of evolutionary theory: A different kind of challenge. In P. Huneman & D. M. Walsh (Eds.), Challenging the modern synthesis: Adaptation, development, and inheritance (pp. 159–187). New York: Oxford University Press.

    Google Scholar 

  • Lynch, M. (2007). The origins of genome architecture. Sunderland, MA: Sinauer Associates, Inc. Publishers.

    Google Scholar 

  • Martínez, M., & Esposito, M. (2014). Multilevel causation and the extended synthesis. Biological Theory, 9, 209–222.

    Article  Google Scholar 

  • Mayr, E. (1961). Cause and effect in biology. Science, 134, 1501–1506.

    Article  CAS  PubMed  Google Scholar 

  • Mayr, E. (1982). The growth of biological thought: Diversity, evolution, inheritance. Cambridge: Harvard University Press.

    Google Scholar 

  • Miller, W. III (2008). The hierarchical structure of ecosystems: Connections to evolution. Evolution: Education and Outreach, 1, 16–24.

    Google Scholar 

  • Miller, W. III (2016). Unification of macroevolutionary theory. Biologic hierarchies, consonance, and the possibility of connecting the dots. In N. Eldredge, T. Pievani, E. M. Serrelli & I. Tëmkin (Eds.), Evolutionary theory: A hierarchical perspective (pp. 243–259). Chicago: University of Chicago Press.

    Google Scholar 

  • Müller, G. B. (2007). Six memos for Evo-Devo. In M. D. Laubichler & J. Maienschein (Eds.), From embryology to Evo-Devo: A history of developmental evolution (pp. 499–524). Cambridge: The MIT Press.

    Google Scholar 

  • Müller, G. B. (2014). EvoDevo shapes the extended synthesis. Biological Theory, 9, 119–121.

    Article  Google Scholar 

  • Nei, M. (2013). Mutation-driven evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Nicholson, D. J. (2014). The return of the organism as a fundamental explanatory concept in biology. Philosophy Compass, 9(5), 347–359.

    Article  Google Scholar 

  • Noble, D., Jablonka, E., Joyners, M. J., Müller, G. B., & Omholt, S. W. (2014). Evolution evolves: Physiology returns to centre stage. The Journal of physiology, 592, 2237–2244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odling-Smee, F. J. (2009). Niche construction in evolution, ecosystems and developmental biology. In A. Barberousse, M. Morange & T. Pradeu (Eds.), Mapping the future of biology (pp. 69–91). New York: Springer.

    Chapter  Google Scholar 

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Odling-Smee, J., Erwin, D. H., Palkovacs, E. P., Feldman, M. W., & Laland, K. N. (2013). Niche construction theory: A practical guide for ecologists. The Quarterly Review of Biology, 88, 4–28.

    Article  PubMed  Google Scholar 

  • Odling-Smee, J., & Laland, K. N. (2011). Ecological inheritance and cultural inheritance: What are they and how do they differ? Biological Theory, 6, 220–230.

    Article  Google Scholar 

  • Okasha, S. (2006). Evolution and the levels of selection. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Okasha, S. (2011). Emergence, hierarchy and top-down causation in evolutionary biology. Interface Focus, 2, 49–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oyama, S. (2000). The ontogeny of information. Developmental systems and evolution. Durham: Duke University Press.

    Book  Google Scholar 

  • Parravicini, A., & Pievani, T. (2016). Multi-level human evolution: Ecological patterns in hominin phylogeny. Journal of Anthropological Sciences, 94, 167–182.

    PubMed  Google Scholar 

  • Pavličev, M., & Wagner, G. P. (2015). Evolutionary systems biology: Shifting focus to the context-dependency of genetic effects. In L. B. Martin, G. K. Ghalambor & H. A. Woods (Eds.), Integrative Organismal Biology (pp. 91–108). Hoboken: Wiley.

    Google Scholar 

  • Pepper, J. W., & Herron, M. D. (2008). Does biology need an organism concept? Biological Reviews of the Cambridge Philosophical Society, 83(4), 621–627.

    Article  PubMed  Google Scholar 

  • Pievani, T. (2016a). How to rethink evolutionary theory: A plurality of evolutionary patterns. Evolutionary Biology, 43(4), 446–455.

    Article  Google Scholar 

  • Pievani, T. (2016b). Hierarchy theory and the extended synthesis debate. In N. Eldredge, T. Pievani, E. M. Serrelli & I. Tëmkin (Eds.), Evolutionary theory: A hierarchical perspective (pp. 351–364). Chicago: University of Chicago Press.

    Google Scholar 

  • Pievani, T., & Parravicini, A. (2016). Multilevel selection in a broader hierarchical perspective. In N. Eldredge, T. Pievani, E. M. Serrelli & I. Tëmkin (Eds.), Evolutionary theory: A hierarchical perspective (pp. 174–201). Chicago: University of Chicago Press.

    Google Scholar 

  • Pievani, T., & Serrelli, E. (2013). Bucket thinking: The future framework for evolutionary explanation. Contrastes, 18, 389–405.

    Google Scholar 

  • Pigliucci, M. (2009). An extended synthesis for evolutionary biology. Annals of the New York Academy of Sciences, 1168, 218–228.

    Article  PubMed  Google Scholar 

  • Pigliucci, M., & Müller, G. B. (Eds.). (2010a). Evolution: The extended synthesis. Boston: MIT Press.

    Google Scholar 

  • Pigliucci, M., & Müller, G. B. (2010b). Elements of an extended evolutionary synthesis. In M. Pigliucci & G. B. Müller (Eds.), Evolution: The extended synthesis (pp. 3–17). Boston: The MIT Press.

    Chapter  Google Scholar 

  • Piperno, D. R. (2017). Assessing elements of an extended evolutionary synthesis for plant domestication and agricultural origin research. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1703658114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Provine, W. B. (2001). The origins of theoretical population genetics (2nd edn.). Chicago: University of Chicago Press.

    Google Scholar 

  • Reif, W. E., Junker, T., & Hoßfeld, U. (2000). The synthetic theory of evolution: General problems and the German contribution to the synthesis. Theory in Biosciences, 119, 41–49.

    Article  Google Scholar 

  • Riedl, R. (1978). Order in living organisms: A systems analysis of evolution. New York: Wiley.

    Google Scholar 

  • Sansom, R. (2009). The nature of developmental constraints and the difference-maker argument for externalism. Biology and Philosophy, 24, 441–445.

    Article  Google Scholar 

  • Sepkoski, D. (2012). Rereading the fossil record: The growth of paleobiology as an evolutionary discipline. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Serrelli, E., & Gontier, N. (2015). Macroevolutionary issues and approaches in evolutionary biology. In E. Serrelli & N. Gontier (Eds.), Macroevolution: Explanation, interpretation and evidence (pp. 1–25). Switzerland: Springer International Publishing.

    Google Scholar 

  • Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.

    Google Scholar 

  • Sloan-Wilson, D. (2010). Multilevel selection and major transitions. In M. Pigliucci & G. B. Müller (Eds.), Evolution: The extended synthesis (pp. 81–93). Boston: The MIT Press.

    Chapter  Google Scholar 

  • Stotz, K. (2014). Extended evolutionary psychology: The importance of transgenerational developmental plasticity. Frontiers in Psychology, 5, 908. https://doi.org/10.3389/fpsyg.2014.00908.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sultan, S. (2015). Organism and environment: Ecological development, niche construction, and adaptation. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Suman, F. (2016). An updated evolutionary research programme for the evolution of language. Topoi. https://doi.org/10.1007/s11245-016-9419-7.

    Article  Google Scholar 

  • Svensson, E. I. (2017). On reciprocal causation in the evolutionary process. Evolutionary Biology. https://doi.org/10.1007/s11692-017-9431-x.

    Article  PubMed  Google Scholar 

  • Szathmáry, E. (2006). The origin of replicators and reproducers. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361, 1761–1776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tëmkin, I., & Eldredge, N. (2007). Phylogenetics and material cultural evolution. Current Anthropology, 48, 146–153.

    Article  Google Scholar 

  • Tëmkin, I., & Eldredge, N. (2015). Networks and hierarchies: Approaching complexity in evolutionary theory. In E. Serrelli & N. Gontier (Eds.), Macroevolution: Explanation, interpretation, evidence (pp. 183–226). Switzerland: Springer International Publishing.

    Google Scholar 

  • Tëmkin, I., & Serrelli, E. (2016). General principles of biological hierarchical systems. In N. Eldredge, T. Pievani, E. M. Serrelli & I. Tëmkin (Eds.), Evolutionary theory: A hierarchical perspective (pp. 19–25). Chicago: University of Chicago Press.

    Google Scholar 

  • Turner, D. D. (2009). How much can we know about the causes of evolutionary trends? Biology and Philosophy, 24, 341–357.

    Article  Google Scholar 

  • Van Bocxlaer, B., & Hunt, G. (2013). Morphological stasis in an ongoing gastropod radiation from Lake Malawi. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13892–13897.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vergara-Silva, F. (2016). Introducción. Filogenia y ontogenia del evolucionismo en antropología. Cuicuilco, 23(65), 118–132.

    Google Scholar 

  • Vianello, A., & Passamonti, S. (2016). Biochemistry and physiology within the framework of the extended synthesis of evolutionary biology. Biology Direct, 11, 7. https://doi.org/10.1186/s13062-016-0109-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vrba, E. S. (1985). Environment and evolution: Alternative causes of the temporal distribution of evolutionary events. South African Journal of Science, 81(5), 229–236.

    Google Scholar 

  • Vrba, E. S. (1993). Turnover-pulses, the Red Queen, and related topics. American Journal of Science, 293, 418–452.

    Article  Google Scholar 

  • Vrba, E. S. (2005). Mass turnover and heterochrony events in response to physical change. Paleobiology, 31(2), 157–174.

    Article  Google Scholar 

  • Wagner, A. (2011). The origins of evolutionary innovations. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Wagner, G. P. (2014). Homology, genes and evolutionary innovation. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Wagner, G. P. (2015). Reinventing the organism: Evolvability and homology in post-dahlem evolutionary biology. In A. C. Love (Ed.), Conceptual change in biology. Scientific and philosophical perspectives on evolution and development (pp. 327–342). Dordrecht: Springer Science and Business Media.

    Google Scholar 

  • Walsh, D. M. (2015). Organisms, agency, and evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Welch, J. J. (2017). What’s wrong with evolutionary biology? Biology and Philosophy, 32, 263–279.

    Article  PubMed  Google Scholar 

  • Winther, R. G., Wade, M. J., & Dimond, C. C. (2013). Pluralism in evolutionary controversies: Styles and averaging strategies in hierarchical selection theories. Biology and Philosophy, 28, 957–979.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Telmo Pievani, Ilya Tëmkin, Emanuele Serrelli, Andrea Parravicini, Francesco Suman, Warren D. Allmon, T. Ryan Gregory, Stefan Linquist and Mihaela Pavličev for insightful discussions during the 2016 International Meeting “Evolutionary Theory: A Hierarchical Perspective” (September 22–23, Washington, D.C and Annandale, VA), where the first author presented a preliminary version of this paper. We are indebted to an anonymous reviewer for the feedback provided and his suggestions of further lines of inquiry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Fábregas-Tejeda or Francisco Vergara-Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fábregas-Tejeda, A., Vergara-Silva, F. Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts. Evol Biol 45, 127–139 (2018). https://doi.org/10.1007/s11692-017-9438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-017-9438-3

Keywords

Navigation