Maternal Testosterone and Offspring Sex-Ratio in Birds and Mammals: A Meta-Analysis

Abstract

Sex allocation theory predicts that parents should bias offspring sex to maximize their fitness in a given context. Quantifying the fitness benefits of offspring sex-ratio biases would be facilitated by a better knowledge of their underlying mechanism(s) and associated costs. The hypothesis that steroid hormones are involved in sex determination has gained in popularity recently. Being influenced by external stimuli and involved in a range of physiological processes, they could be a ubiquitous mediator of environmental conditions influencing sex-ratio with low fitness costs. Previous studies indicated that higher maternal testosterone levels led to the overproduction of sons around conception in both birds and mammals. We conducted a systematic review (including meta-analysis) of these studies and, as predicted, we found a weak positive and significant overall effect of maternal testosterone on the proportion of sons. Neither taxa, nor the type of study (experimental/observational), or the timing of timing testosterone manipulation/measure were significant predictors of offspring sex-ratio, which may be explained by low statistical power in addition to low variability between effect sizes. Our meta-analysis provides evidence for a general positive influence of maternal testosterone around conception on the proportion of sons across birds and mammals, although less confidently so for the latter. It begs for more large-scale experimental studies, especially on mammals, and ideally in the wild. It may also have some important consequences for the poultry industry.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Alonso-Alvarez, C. (2006). Manipulation of primary sex-ratio: An updated review. Avian and Poultry Biology Reviews, 17(1), 1–20.

    Article  Google Scholar 

  2. Arnon, L., Hazut, N., Tabachnik, T., Weller, A., & Koren, L. (2016). Maternal testosterone and reproductive outcome in a rat model of obesity. Theriogenology, 86(4), 1042–1047.

    CAS  Article  PubMed  Google Scholar 

  3. Bartoń, K. (2016). MuMIn: Multi-model inference (version 1.15.6). https://CRAN.R-project.org/package=MuMIn.

  4. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd edn.). Berlin: Springer.

    Google Scholar 

  5. Cameron, E. Z. (2004). Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: Evidence for a mechanism. Proceedings of the Royal Society of London Series B-Biological Sciences, 271(1549), 1723–1728.

    Article  Google Scholar 

  6. Cameron, E. Z., Lemons, P. R., Bateman, P. W., & Bennett, N. C. (2008). Experimental alteration of litter sex ratios in a mammal. Proceedings of the Royal Society B: Biological Sciences, 275(1632), 323–327.

    Article  PubMed  Google Scholar 

  7. Cameron, E. Z., & Linklater, W. L. (2007). Extreme sex ratio variation in relation to change in condition around conception. Biology Letters, 3(4), 395–397.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cockburn, A., Legge, S., & Double, M. (2002). Sex ratios in birds and mammals: Can the hypotheses be disentangled. In I. C. W. Hardy (Ed.) Sex ratios: Concepts and research methods (pp. 266–286). Cambridge: Cambridge University Press.

    Google Scholar 

  9. Correa, S. M., Horan, C. M., Johnson, P. A., & Adkins-Regan, E. (2011). Copulatory behaviors and body condition predict post-mating female hormone concentrations, fertilization success, and primary sex ratios in Japanese quail. Hormones and Behavior, 59(4), 556–564.

    CAS  Article  PubMed  Google Scholar 

  10. Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463.

    CAS  Article  PubMed  Google Scholar 

  11. Edwards, A. M., & Cameron, E. Z. (2014). Forgotten fathers: Paternal influences on mammalian sex allocation. Trends in Ecology & Evolution, 29(3), 158–164.

    Article  Google Scholar 

  12. Edwards, A. M., Cameron, E. Z., Pereira, J. C., & Ferguson-Smith, M. A. (2016). Paternal sex allocation: How variable is the sperm sex ratio? Journal of Zoology, 299(1), 37–41.

    Article  Google Scholar 

  13. Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fuertbauer, I., Heistermann, M., Schuelke, O., & Ostner, J. (2012). Brief communication: Fecal androgen excretion and fetal sex effects during gestation in wild assamese macaques (Macaca assamensis). American Journal of Physical Anthropology, 147(2), 334–339. doi:10.1002/ajpa.21646.

    Article  Google Scholar 

  15. Gam, A. E., Mendonça, M. T., & Navara, K. J. (2011). Acute corticosterone treatment prior to ovulation biases offspring sex ratios towards males in zebra finches Taeniopygia guttata. Journal of Avian Biology, 42(3), 253–258.

    Article  Google Scholar 

  16. Gleason, E. D., Fuxjager, M. J., Oyegbile, T. O., & Marler, C. A. (2009). Testosterone release and social context: When it occurs and why. Frontiers in Neuroendocrinology, 30(4), 460–469.

    CAS  Article  PubMed  Google Scholar 

  17. Goerlich, V. C., Dijkstra, C., Boonekamp, J. J., & Groothuis, T. G. G. (2010). Change in body mass can overrule the effects of maternal testosterone on primary offspring sex ratio of first eggs in homing pigeons. Physiological and Biochemical Zoology, 83(3), 490–500.

    CAS  Article  PubMed  Google Scholar 

  18. Goerlich, V. C., Dijkstra, C., Schaafsma, S. M., & Groothuis, T. G. G. (2009). Testosterone has a long-term effect on primary sex ratio of first eggs in pigeons-in search of a mechanism. General and Comparative Endocrinology, 163(1–2), 184–192.

    CAS  Article  PubMed  Google Scholar 

  19. Grant, V. J. (2007). Could maternal testosterone levels govern mammalian sex ratio deviations? Journal of Theoretical Biology, 246(4), 708–719.

    CAS  Article  PubMed  Google Scholar 

  20. Grant, V. J., & Chamley, L. W. (2010). Can mammalian mothers influence the sex of their offspring peri-conceptually? Reproduction (Cambridge, England), 140(3), 425–433.

    CAS  Article  Google Scholar 

  21. Grant, V. J., Irwin, R. J., Standley, N. T., Shelling, A. N., & Chamley, L. W. (2008). Sex of Bovine Embryos May Be Related to Mothers’ Preovulatory Follicular Testosterone. Biology of Reproduction, 78(5), 812–815.

    CAS  Article  PubMed  Google Scholar 

  22. Grant, V. J., Konecna, M., Sonnweber, R.-S., Irwin, R. J., & Wallner, B. (2011). Macaque mothers’ preconception testosterone levels relate to dominance and to sex of offspring. Animal Behaviour, 82(4), 893–899.

    Article  Google Scholar 

  23. Hedges, L. V., & Olkin, I. (2014). Statistical methods for meta-analysis. New York: Academic press.

  24. Helle, S., Laaksonen, T., Adamsson, A., Paranko, J., & Huitu, O. (2008). Female field voles with high testosterone and glucose levels produce male-biased litters. Animal Behaviour, 75(3), 1031–1039.

    Article  Google Scholar 

  25. Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ihle, M., Winney, I. S., Krystalli, A., & Croucher, M. (2017). Striving for transparent and credible research: Practical guidelines for behavioral ecologists. Behavioral Ecology, 28(2), 348–354.

    Article  Google Scholar 

  27. Jennions, M. D., & Møller, A. P. (2002). Relationships fade with time: A meta-analysis of temporal trends in publication in ecology and evolution. Proceedings of the Royal Society of London B: Biological Sciences, 269(1486), 43–48.

    Article  Google Scholar 

  28. Kesler, D. J., Favero, R. J., Esarey, J. C., & Berger, L. L. (1995). Controlled delivery of testosterone propionate suppresses fertility in treated females and induces prenatal androgenization in female offspring without phenotypic masculinization. Drug Development and Industrial Pharmacy, 21(13), 1513–1527.

    CAS  Article  Google Scholar 

  29. Komdeur, J. (2012). Sex allocation. In N. J. Royle, P. T. Smiseth & M. Kölliker (Eds.) The evolution of parental care (pp. 171–188). Oxford: Oxford University Press.

    Google Scholar 

  30. Komdeur, J., Magrath, M. J. L., & Krackow, S. (2002). Pre-ovulation control of hatchling sex ratio in the Seychelles warbler. Proceedings of the Royal Society of London Series B-Biological Sciences, 269(1495), 1067–1072.

    Article  Google Scholar 

  31. Komdeur, J., & Pen, I. (2002). Adaptive sex allocation in birds: The complexities of linking theory and practice. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 357(1419), 373–380.

    Article  Google Scholar 

  32. Krackow, S. (1995). Potential mechanisms for sex ratio adjustment in mammals and birds. Biological Reviews, 70(2), 225–241.

    CAS  Article  PubMed  Google Scholar 

  33. Lovern, M. B., & Wade, J. (2003). Yolk testosterone varies with sex in eggs of the lizard, Anolis carolinensis. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 295(2), 206–210.

    Article  Google Scholar 

  34. Malo, A. F., Martinez-Pastor, F., Garcia-Gonzalez, F., Garde, J., Ballou, J. D., & Lacy, R. C. (2017). A father effect explains sex-ratio bias. Proceedings of the Royal Society of London Series B-Biological Sciences, 284(1861), 20171159.

    Article  Google Scholar 

  35. Mazuc, J., Bonneaud, C., Chastel, O., & Sorci, G. (2003). Social environment affects female and egg testosterone levels in the house sparrow (Passer domesticus). Ecology Letters, 6(12), 1084–1090.

    Article  Google Scholar 

  36. Michonneau, F., Brown, J. W., & Winter, D. J. (2016). rotl: An R package to interact with the Open Tree of Life data. Methods in Ecology and Evolution, 7(12), 1476–1481.

    Article  Google Scholar 

  37. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269.

    Article  PubMed  Google Scholar 

  38. Navara, K. J. (2010). Programming of offspring sex ratios by maternal stress in humans: Assessment of physiological mechanisms using a comparative approach. Journal of Comparative Physiology B, 180(6), 785–796.

    Article  Google Scholar 

  39. Navara, K. J. (2013a). Hormone-mediated adjustment of sex ratio in vertebrates. Integrative and Comparative Biology, 53(6), 877–887.

    CAS  Article  PubMed  Google Scholar 

  40. Navara, K. J. (2013b). The role of steroid hormones in the adjustment of primary sex ratio in birds: Compiling the pieces of the puzzle. Integrative and comparative biology, 53(6), 923–937.

    CAS  Article  PubMed  Google Scholar 

  41. Pandian, T. J., & Sheela, S. G. (1995). Hormonal induction of sex reversal in fish. Aquaculture, 138(1), 1–22.

    CAS  Article  Google Scholar 

  42. Parker, T. H., Forstmeier, W., Koricheva, J., Fidler, F., Hadfield, J. D., Chee, Y. E., et al. (2016). Transparency in ecology and evolution: Real problems, real solutions. Trends in Ecology & Evolution, 31(9), 711–719.

    Article  Google Scholar 

  43. Pavitt, A. T., Pemberton, J. M., Kruuk, L. E. B., & Walling, C. A. (2016). Testosterone and cortisol concentrations vary with reproductive status in wild female red deer. Ecology and Evolution, 6(4), 1163–1172.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pike, T. W., & Petrie, M. (2005). Maternal body condition and plasma hormones affect offspring sex ratio in peafowl. Animal Behaviour, 70(4), 745–751.

    Article  Google Scholar 

  45. Pike, T. W., & Petrie, M. (2006). Experimental evidence that corticosterone affects offspring sex ratios in quail. Proceedings Biological sciences/The Royal Society, 273(1590), 1093–1098.

    CAS  Article  Google Scholar 

  46. Pinson, S. E., Parr, C. M., Wilson, J. L., & Navara, K. J. (2011a). Acute corticosterone administration during meiotic segregation stimulates females to produce more male offspring. Physiological and Biochemical Zoology, 84(3), 292–298.

    CAS  Article  PubMed  Google Scholar 

  47. Pinson, S. E., Wilson, J. L., & Navara, K. J. (2011b). Elevated testosterone during meiotic segregation stimulates laying hens to produce more sons than daughters. General and Comparative Endocrinology, 174(2), 195–201.

    CAS  Article  PubMed  Google Scholar 

  48. Pinson, S. E., Wilson, J. L., & Navara, K. J. (2015). Timing matters: Corticosterone injections 4 h before ovulation bias sex ratios towards females in chickens. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 185(5), 539–546.

    CAS  Article  Google Scholar 

  49. R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.

  50. Robert, K. A., & Schwanz, L. E. (2011). Emerging sex allocation research in mammals: Marsupials and the pouch advantage. Mammal Review, 41(1), 1–22.

    Article  Google Scholar 

  51. Rutkowska, J., & Badyaev, A. V. (2008). Meiotic drive and sex determination: Molecular and cytological mechanisms of sex ratio adjustment in birds. Philosophical Transactions of the Royal Society B-Biological Sciences, 363(1497), 1675–1686.

    Article  Google Scholar 

  52. Rutkowska, J., & Cichoń, M. (2006). Maternal testosterone affects the primary sex ratio and offspring survival in zebra finches. Animal Behaviour, 71(6), 1283–1288.

    Article  Google Scholar 

  53. Senior, A. M., Grueber, C. E., Kamiya, T., Lagisz, M., O’Dwyer, K., Santos, E. S., & Nakagawa, S. (2016). Heterogeneity in ecological and evolutionary meta-analyses: Its magnitude and implications. Ecology, 97(12), 3293–3299.

    Article  PubMed  Google Scholar 

  54. Setchell, J. M., Smith, T. E., & Knapp, L. A. (2015). Androgens in a female primate: Relationships with reproductive status, age, dominance rank, fetal sex and secondary sexual color. Physiology & Behavior, 147, 245–254.

    CAS  Article  Google Scholar 

  55. Shargal, D., Shore, L., Roteri, N., Terkel, A., Zorovsky, Y., Shemesh, A., & Steinberger, Y. (2008). Fecal testosterone is elevated in high ranking female ibexes (Capra nubiana) and associated with increased aggression and a preponderance of male offspring. Theriogenology, 69(6), 673–680.

    CAS  Article  PubMed  Google Scholar 

  56. Uller, T., & Badyaev, A. V. (2009). Evolution of “determinants” in sex-determination: A novel hypothesis for the origin of environmental contingencies in avian sex-bias. Seminars in Cell & Developmental Biology, 20(3), 304–312.

    Article  Google Scholar 

  57. Veiga, J. P., Vinuela, J., Cordero, P. J., Aparicio, J. M., & Polo, V. (2004). Experimentally increased testosterone affects social rank and primary sex ratio in the spotless starling. Hormones and Behavior, 46(1), 47–53.

    CAS  Article  PubMed  Google Scholar 

  58. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48.

    Article  Google Scholar 

  59. Wallace, B. C., Small, K., Brodley, C. E., Lau, J., & Trikalinos, T. A. (2012). Deploying an interactive machine learning system in an evidence-based practice center: Abstrackr. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium (pp. 819–824). Miami: ACM. http://dl.acm.org/citation.cfm?id=2110464.

  60. West, S. A. (2009). Sex allocation. Princeton, NJ: Princeton University Press.

    Google Scholar 

  61. West, S. A., & Sheldon, B. C. (2002). Constraints in the evolution of sex ratio adjustment. Science, 295(5560), 1685–1688.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Tom Pike, Dorit Shargil, Joanna Setchell, Lee Koren and Allison Pavitt for responding to requests for additional data. We also thank three anonymous reviewers for useful comments on a previous version of the manuscript. T. M. was supported by an Endeavour Research Fellowship. S. N. is funded by an ARC Future Fellowship (FT130100268).

Data Accessibility

All data and code are available on the Open Science Framework (https://osf.io/67q8d/).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Merkling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Merkling, T., Nakagawa, S., Lagisz, M. et al. Maternal Testosterone and Offspring Sex-Ratio in Birds and Mammals: A Meta-Analysis. Evol Biol 45, 96–104 (2018). https://doi.org/10.1007/s11692-017-9432-9

Download citation

Keywords

  • Differential mortality
  • Poultry
  • Sex ratio
  • Proximate mechanism
  • Sex determination
  • Steroids