Skip to main content
Log in

Maternal Testosterone and Offspring Sex-Ratio in Birds and Mammals: A Meta-Analysis

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Sex allocation theory predicts that parents should bias offspring sex to maximize their fitness in a given context. Quantifying the fitness benefits of offspring sex-ratio biases would be facilitated by a better knowledge of their underlying mechanism(s) and associated costs. The hypothesis that steroid hormones are involved in sex determination has gained in popularity recently. Being influenced by external stimuli and involved in a range of physiological processes, they could be a ubiquitous mediator of environmental conditions influencing sex-ratio with low fitness costs. Previous studies indicated that higher maternal testosterone levels led to the overproduction of sons around conception in both birds and mammals. We conducted a systematic review (including meta-analysis) of these studies and, as predicted, we found a weak positive and significant overall effect of maternal testosterone on the proportion of sons. Neither taxa, nor the type of study (experimental/observational), or the timing of timing testosterone manipulation/measure were significant predictors of offspring sex-ratio, which may be explained by low statistical power in addition to low variability between effect sizes. Our meta-analysis provides evidence for a general positive influence of maternal testosterone around conception on the proportion of sons across birds and mammals, although less confidently so for the latter. It begs for more large-scale experimental studies, especially on mammals, and ideally in the wild. It may also have some important consequences for the poultry industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alonso-Alvarez, C. (2006). Manipulation of primary sex-ratio: An updated review. Avian and Poultry Biology Reviews, 17(1), 1–20.

    Article  Google Scholar 

  • Arnon, L., Hazut, N., Tabachnik, T., Weller, A., & Koren, L. (2016). Maternal testosterone and reproductive outcome in a rat model of obesity. Theriogenology, 86(4), 1042–1047.

    Article  CAS  PubMed  Google Scholar 

  • Bartoń, K. (2016). MuMIn: Multi-model inference (version 1.15.6). https://CRAN.R-project.org/package=MuMIn.

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd edn.). Berlin: Springer.

    Google Scholar 

  • Cameron, E. Z. (2004). Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: Evidence for a mechanism. Proceedings of the Royal Society of London Series B-Biological Sciences, 271(1549), 1723–1728.

    Article  Google Scholar 

  • Cameron, E. Z., Lemons, P. R., Bateman, P. W., & Bennett, N. C. (2008). Experimental alteration of litter sex ratios in a mammal. Proceedings of the Royal Society B: Biological Sciences, 275(1632), 323–327.

    Article  PubMed  Google Scholar 

  • Cameron, E. Z., & Linklater, W. L. (2007). Extreme sex ratio variation in relation to change in condition around conception. Biology Letters, 3(4), 395–397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cockburn, A., Legge, S., & Double, M. (2002). Sex ratios in birds and mammals: Can the hypotheses be disentangled. In I. C. W. Hardy (Ed.) Sex ratios: Concepts and research methods (pp. 266–286). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Correa, S. M., Horan, C. M., Johnson, P. A., & Adkins-Regan, E. (2011). Copulatory behaviors and body condition predict post-mating female hormone concentrations, fertilization success, and primary sex ratios in Japanese quail. Hormones and Behavior, 59(4), 556–564.

    Article  CAS  PubMed  Google Scholar 

  • Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, A. M., & Cameron, E. Z. (2014). Forgotten fathers: Paternal influences on mammalian sex allocation. Trends in Ecology & Evolution, 29(3), 158–164.

    Article  Google Scholar 

  • Edwards, A. M., Cameron, E. Z., Pereira, J. C., & Ferguson-Smith, M. A. (2016). Paternal sex allocation: How variable is the sperm sex ratio? Journal of Zoology, 299(1), 37–41.

    Article  Google Scholar 

  • Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuertbauer, I., Heistermann, M., Schuelke, O., & Ostner, J. (2012). Brief communication: Fecal androgen excretion and fetal sex effects during gestation in wild assamese macaques (Macaca assamensis). American Journal of Physical Anthropology, 147(2), 334–339. doi:10.1002/ajpa.21646.

    Article  Google Scholar 

  • Gam, A. E., Mendonça, M. T., & Navara, K. J. (2011). Acute corticosterone treatment prior to ovulation biases offspring sex ratios towards males in zebra finches Taeniopygia guttata. Journal of Avian Biology, 42(3), 253–258.

    Article  Google Scholar 

  • Gleason, E. D., Fuxjager, M. J., Oyegbile, T. O., & Marler, C. A. (2009). Testosterone release and social context: When it occurs and why. Frontiers in Neuroendocrinology, 30(4), 460–469.

    Article  CAS  PubMed  Google Scholar 

  • Goerlich, V. C., Dijkstra, C., Boonekamp, J. J., & Groothuis, T. G. G. (2010). Change in body mass can overrule the effects of maternal testosterone on primary offspring sex ratio of first eggs in homing pigeons. Physiological and Biochemical Zoology, 83(3), 490–500.

    Article  CAS  PubMed  Google Scholar 

  • Goerlich, V. C., Dijkstra, C., Schaafsma, S. M., & Groothuis, T. G. G. (2009). Testosterone has a long-term effect on primary sex ratio of first eggs in pigeons-in search of a mechanism. General and Comparative Endocrinology, 163(1–2), 184–192.

    Article  CAS  PubMed  Google Scholar 

  • Grant, V. J. (2007). Could maternal testosterone levels govern mammalian sex ratio deviations? Journal of Theoretical Biology, 246(4), 708–719.

    Article  CAS  PubMed  Google Scholar 

  • Grant, V. J., & Chamley, L. W. (2010). Can mammalian mothers influence the sex of their offspring peri-conceptually? Reproduction (Cambridge, England), 140(3), 425–433.

    Article  CAS  Google Scholar 

  • Grant, V. J., Irwin, R. J., Standley, N. T., Shelling, A. N., & Chamley, L. W. (2008). Sex of Bovine Embryos May Be Related to Mothers’ Preovulatory Follicular Testosterone. Biology of Reproduction, 78(5), 812–815.

    Article  CAS  PubMed  Google Scholar 

  • Grant, V. J., Konecna, M., Sonnweber, R.-S., Irwin, R. J., & Wallner, B. (2011). Macaque mothers’ preconception testosterone levels relate to dominance and to sex of offspring. Animal Behaviour, 82(4), 893–899.

    Article  Google Scholar 

  • Hedges, L. V., & Olkin, I. (2014). Statistical methods for meta-analysis. New York: Academic press.

  • Helle, S., Laaksonen, T., Adamsson, A., Paranko, J., & Huitu, O. (2008). Female field voles with high testosterone and glucose levels produce male-biased litters. Animal Behaviour, 75(3), 1031–1039.

    Article  Google Scholar 

  • Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ihle, M., Winney, I. S., Krystalli, A., & Croucher, M. (2017). Striving for transparent and credible research: Practical guidelines for behavioral ecologists. Behavioral Ecology, 28(2), 348–354.

    Article  Google Scholar 

  • Jennions, M. D., & Møller, A. P. (2002). Relationships fade with time: A meta-analysis of temporal trends in publication in ecology and evolution. Proceedings of the Royal Society of London B: Biological Sciences, 269(1486), 43–48.

    Article  Google Scholar 

  • Kesler, D. J., Favero, R. J., Esarey, J. C., & Berger, L. L. (1995). Controlled delivery of testosterone propionate suppresses fertility in treated females and induces prenatal androgenization in female offspring without phenotypic masculinization. Drug Development and Industrial Pharmacy, 21(13), 1513–1527.

    Article  CAS  Google Scholar 

  • Komdeur, J. (2012). Sex allocation. In N. J. Royle, P. T. Smiseth & M. Kölliker (Eds.) The evolution of parental care (pp. 171–188). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Komdeur, J., Magrath, M. J. L., & Krackow, S. (2002). Pre-ovulation control of hatchling sex ratio in the Seychelles warbler. Proceedings of the Royal Society of London Series B-Biological Sciences, 269(1495), 1067–1072.

    Article  Google Scholar 

  • Komdeur, J., & Pen, I. (2002). Adaptive sex allocation in birds: The complexities of linking theory and practice. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 357(1419), 373–380.

    Article  Google Scholar 

  • Krackow, S. (1995). Potential mechanisms for sex ratio adjustment in mammals and birds. Biological Reviews, 70(2), 225–241.

    Article  CAS  PubMed  Google Scholar 

  • Lovern, M. B., & Wade, J. (2003). Yolk testosterone varies with sex in eggs of the lizard, Anolis carolinensis. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 295(2), 206–210.

    Article  Google Scholar 

  • Malo, A. F., Martinez-Pastor, F., Garcia-Gonzalez, F., Garde, J., Ballou, J. D., & Lacy, R. C. (2017). A father effect explains sex-ratio bias. Proceedings of the Royal Society of London Series B-Biological Sciences, 284(1861), 20171159.

    Article  Google Scholar 

  • Mazuc, J., Bonneaud, C., Chastel, O., & Sorci, G. (2003). Social environment affects female and egg testosterone levels in the house sparrow (Passer domesticus). Ecology Letters, 6(12), 1084–1090.

    Article  Google Scholar 

  • Michonneau, F., Brown, J. W., & Winter, D. J. (2016). rotl: An R package to interact with the Open Tree of Life data. Methods in Ecology and Evolution, 7(12), 1476–1481.

    Article  Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269.

    Article  PubMed  Google Scholar 

  • Navara, K. J. (2010). Programming of offspring sex ratios by maternal stress in humans: Assessment of physiological mechanisms using a comparative approach. Journal of Comparative Physiology B, 180(6), 785–796.

    Article  Google Scholar 

  • Navara, K. J. (2013a). Hormone-mediated adjustment of sex ratio in vertebrates. Integrative and Comparative Biology, 53(6), 877–887.

    Article  CAS  PubMed  Google Scholar 

  • Navara, K. J. (2013b). The role of steroid hormones in the adjustment of primary sex ratio in birds: Compiling the pieces of the puzzle. Integrative and comparative biology, 53(6), 923–937.

    Article  CAS  PubMed  Google Scholar 

  • Pandian, T. J., & Sheela, S. G. (1995). Hormonal induction of sex reversal in fish. Aquaculture, 138(1), 1–22.

    Article  CAS  Google Scholar 

  • Parker, T. H., Forstmeier, W., Koricheva, J., Fidler, F., Hadfield, J. D., Chee, Y. E., et al. (2016). Transparency in ecology and evolution: Real problems, real solutions. Trends in Ecology & Evolution, 31(9), 711–719.

    Article  Google Scholar 

  • Pavitt, A. T., Pemberton, J. M., Kruuk, L. E. B., & Walling, C. A. (2016). Testosterone and cortisol concentrations vary with reproductive status in wild female red deer. Ecology and Evolution, 6(4), 1163–1172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pike, T. W., & Petrie, M. (2005). Maternal body condition and plasma hormones affect offspring sex ratio in peafowl. Animal Behaviour, 70(4), 745–751.

    Article  Google Scholar 

  • Pike, T. W., & Petrie, M. (2006). Experimental evidence that corticosterone affects offspring sex ratios in quail. Proceedings Biological sciences/The Royal Society, 273(1590), 1093–1098.

    Article  CAS  Google Scholar 

  • Pinson, S. E., Parr, C. M., Wilson, J. L., & Navara, K. J. (2011a). Acute corticosterone administration during meiotic segregation stimulates females to produce more male offspring. Physiological and Biochemical Zoology, 84(3), 292–298.

    Article  CAS  PubMed  Google Scholar 

  • Pinson, S. E., Wilson, J. L., & Navara, K. J. (2011b). Elevated testosterone during meiotic segregation stimulates laying hens to produce more sons than daughters. General and Comparative Endocrinology, 174(2), 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Pinson, S. E., Wilson, J. L., & Navara, K. J. (2015). Timing matters: Corticosterone injections 4 h before ovulation bias sex ratios towards females in chickens. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 185(5), 539–546.

    Article  CAS  Google Scholar 

  • R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.

  • Robert, K. A., & Schwanz, L. E. (2011). Emerging sex allocation research in mammals: Marsupials and the pouch advantage. Mammal Review, 41(1), 1–22.

    Article  Google Scholar 

  • Rutkowska, J., & Badyaev, A. V. (2008). Meiotic drive and sex determination: Molecular and cytological mechanisms of sex ratio adjustment in birds. Philosophical Transactions of the Royal Society B-Biological Sciences, 363(1497), 1675–1686.

    Article  Google Scholar 

  • Rutkowska, J., & Cichoń, M. (2006). Maternal testosterone affects the primary sex ratio and offspring survival in zebra finches. Animal Behaviour, 71(6), 1283–1288.

    Article  Google Scholar 

  • Senior, A. M., Grueber, C. E., Kamiya, T., Lagisz, M., O’Dwyer, K., Santos, E. S., & Nakagawa, S. (2016). Heterogeneity in ecological and evolutionary meta-analyses: Its magnitude and implications. Ecology, 97(12), 3293–3299.

    Article  PubMed  Google Scholar 

  • Setchell, J. M., Smith, T. E., & Knapp, L. A. (2015). Androgens in a female primate: Relationships with reproductive status, age, dominance rank, fetal sex and secondary sexual color. Physiology & Behavior, 147, 245–254.

    Article  CAS  Google Scholar 

  • Shargal, D., Shore, L., Roteri, N., Terkel, A., Zorovsky, Y., Shemesh, A., & Steinberger, Y. (2008). Fecal testosterone is elevated in high ranking female ibexes (Capra nubiana) and associated with increased aggression and a preponderance of male offspring. Theriogenology, 69(6), 673–680.

    Article  CAS  PubMed  Google Scholar 

  • Uller, T., & Badyaev, A. V. (2009). Evolution of “determinants” in sex-determination: A novel hypothesis for the origin of environmental contingencies in avian sex-bias. Seminars in Cell & Developmental Biology, 20(3), 304–312.

    Article  Google Scholar 

  • Veiga, J. P., Vinuela, J., Cordero, P. J., Aparicio, J. M., & Polo, V. (2004). Experimentally increased testosterone affects social rank and primary sex ratio in the spotless starling. Hormones and Behavior, 46(1), 47–53.

    Article  CAS  PubMed  Google Scholar 

  • Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48.

    Article  Google Scholar 

  • Wallace, B. C., Small, K., Brodley, C. E., Lau, J., & Trikalinos, T. A. (2012). Deploying an interactive machine learning system in an evidence-based practice center: Abstrackr. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium (pp. 819–824). Miami: ACM. http://dl.acm.org/citation.cfm?id=2110464.

  • West, S. A. (2009). Sex allocation. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • West, S. A., & Sheldon, B. C. (2002). Constraints in the evolution of sex ratio adjustment. Science, 295(5560), 1685–1688.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Tom Pike, Dorit Shargil, Joanna Setchell, Lee Koren and Allison Pavitt for responding to requests for additional data. We also thank three anonymous reviewers for useful comments on a previous version of the manuscript. T. M. was supported by an Endeavour Research Fellowship. S. N. is funded by an ARC Future Fellowship (FT130100268).

Data Accessibility

All data and code are available on the Open Science Framework (https://osf.io/67q8d/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Merkling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkling, T., Nakagawa, S., Lagisz, M. et al. Maternal Testosterone and Offspring Sex-Ratio in Birds and Mammals: A Meta-Analysis. Evol Biol 45, 96–104 (2018). https://doi.org/10.1007/s11692-017-9432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-017-9432-9

Keywords

Navigation