Skip to main content
Log in

Anyone with a Long-Face? Craniofacial Evolutionary Allometry (CREA) in a Family of Short-Faced Mammals, the Felidae

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Among adults of closely related species, a trend in craniofacial evolutionary allometry (CREA) for larger taxa to be long-faced and smaller ones to have paedomorphic aspects, such as proportionally smaller snouts and larger braincases, has been demonstrated in some mammals and two bird lineages. Nevertheless, whether this may represent a ‘rule’ with few exceptions is still an open question. In this context, Felidae is a particularly interesting family to study because, although its members are short-faced, previous research did suggest relative facial elongation in larger living representatives. Using geometric morphometrics, based on two sets of anatomical landmarks, and traditional morphometrics, for comparing relative lengths of the palate and basicranium, we performed a series of standard and comparative allometric regressions in the Felidae and its two subfamilies. All analyses consistently supported the CREA pattern, with only one minor exception in the geometric morphometric analysis of Pantherinae: the genus Neofelis. With its unusually long canines, Neofelis species seem to have a relatively narrow cranium and long face, despite being smaller than other big cats. In spite of this, overall, our findings strengthen the possibility that the CREA pattern might indeed be a ‘rule’ among mammals, raising questions on the processes behind it and suggesting future directions for its study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, D. C., Cardini, A., Monteiro, L. R., O’Higgins, P., & Rohlf, F. J. (2011). Morphometrics and phylogenetics: Principal components of shape from cranial modules are neither appropriate nor effective cladistic characters. Journal of human evolution, 60, 240–243.

    Article  CAS  PubMed  Google Scholar 

  • Adams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4, 393–399.

    Article  Google Scholar 

  • Adams, D. C., & Collyer, M. L. (2015). Permutation tests for phylogenetic comparative analyses of high-dimensional shape data: What you shuffle matters. Evolution, 69, 823–829.

    Article  PubMed  Google Scholar 

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71, 5–16.

    Article  Google Scholar 

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: geometric morphometrics in the 21st century. Hystrix, The Italian Journal of Mammalogy, 24, 7–14.

    Google Scholar 

  • Adams, D. C., Collyer, M., Kaliontzopoulu, A., & Sherratt, E. (2016). Geomorph: Geometric morphometric analysis of 2D/3D landmark data. Version 3.0.3, Retrieved https://cran.r-project.org/web/packages/geomorph/.

  • Agnarsson, I., Kuntner, M., & May-Collado, L. J. (2010). Dogs, cats, and kin: A molecular species-level phylogeny of Carnivora. Molecular Phylogenetics and Evolution, 54, 726–745.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, C., Matthews L. J., & Nunn, C. L. (2010). The 10kTrees website: A new online resource for primate phylogeny. Evolutionary Anthropology: Issues, News, and Reviews 19, 114–118.

    Article  Google Scholar 

  • Boettiger, C., Coop, G., & Ralph, P. (2012). Is your phylogeny informative? measuring the power of comparative methods. Evolution, 66, 2240–2251.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bright, J. A., Marugán-Lobón, J., Cobb, S. N., et al. (2016). The shapes of bird beaks are highly controlled by nondietary factors. Proceedings of the National Academy of Sciences, 113, 5352–5357.

    Article  CAS  Google Scholar 

  • Carbone, C., Mace, G. M., Roberts, S. C., & Macdonald, D. W. (1999). Energetic constraints on the diet of terrestrial carnivores. Nature, 402, 286–288.

    Article  CAS  PubMed  Google Scholar 

  • Cardini, A. (2014). Missing the third dimension in geometric morphometrics: How to assess if 2D images really are a good proxy for 3D structures? Hystrix, The Italian Journal of Mammalogy, 25, 73–81.

    Google Scholar 

  • Cardini, A. (2017). Left, right or both? Estimating and improving accuracy of one-side-only geometric morphometric analyses of cranial variation. Journal of Zoological Systematics and Evolutionary Research, 55, 1–10.

    Article  Google Scholar 

  • Cardini, A., & Elton, S. (2007). Sample size and sampling error in geometric morphometric studies of size and shape. Zoomorphology, 126, 121–134.

    Article  Google Scholar 

  • Cardini, A., & Polly, P. D. (2013). Larger mammals have longer faces because of size-related constraints on skull form. Nature Communications, 4, 2458.

    Article  PubMed  Google Scholar 

  • Cardini, A., Polly, P. D., Dawson, R., & Milne, N. (2015a). Why the long face? Kangaroos and Wallabies follow the same ‘Rule’ of cranial evolutionary allometry (CREA) as placentals. Evolutionary Biology, 42, 169–176.

    Article  Google Scholar 

  • Cardini, A., Seetah, K., & Barker, G. (2015b). How many specimens do I need? Sampling error in geometric morphometrics, testing the sensitivity of means and variances in simple randomized selection experiments. Zoomorphology, 134, 149–163.

    Article  Google Scholar 

  • Cardini, A. (2013). Geometric morphometrics. In Encyclopedia of life support systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Paris, Retrieved http://www.eolss.net/.

  • Cardini, A. (2016). Why the long face? Evidence for (or against?) a new ‘rule’ in mammalian evolution. 96th Annual Meeting of the American Society of Mammalogists, Abstract Book.

  • Chiozzi, G., Bardelli, G., Ricci, M., De Marchi, G., & Cardini, A. (2014). Just another island dwarf? Phenotypic distinctiveness in the poorly known Soemmerring’s Gazelle, Nanger soemmerringii (Cetartiodactyla: Bovidae), of Dahlak Kebir Island. Biological Journal of the Linnean Society, 111, 603–620.

    Article  Google Scholar 

  • Christiansen, P. (2008). Evolutionary convergence of primitive sabertooth craniomandibular morphology: the clouded leopard (Neofelis nebulosa) and Paramachairodus ogygia compared. Journal of Mammalian Evolution, 15, 155–179.

    Article  Google Scholar 

  • Clauss, M., Dittmann, M. T., Müller, D. W. H., Meloro, C., & Codron, D. (2013). Bergmann′s rule in mammals: A cross-species interspecific pattern. Oikos, 122, 1465–1472.

    Google Scholar 

  • Cooper, N., Thomas, G. H., Venditti, C., Meade, A., & Freckleton, R. P. (2016). A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biological Journal of the Linnean Society, 118, 64–77.

    Article  PubMed  Google Scholar 

  • Drake, A. G., & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: Disparity and modularity. The American Naturalist, 175, 289–301.

    Article  PubMed  Google Scholar 

  • Díaz-Uriarte, R., & Garland, T. (1998). Effects of branch length errors on the performance of phylogenetically independent contrasts. Systematic Biology, 47, 654–672.

    Article  PubMed  Google Scholar 

  • Fruciano, C. (2016). Measurement error in geometric morphometrics. Development Genes and Evolution, 226, 139–158.

    Article  PubMed  Google Scholar 

  • Garland, T., Midford, P. E., & Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Integrative and Comparative Biology, 39, 374–388.

    Google Scholar 

  • Hammer, O., Harper, D., & Ryan, P. (2001). PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electron, 4(1), 1–9.

    Google Scholar 

  • Hartstone-Rose, A., Perry, J. M., & Morrow, C. J. (2012). Bite force estimation and the fiber architecture of felid masticatory muscles. The Anatomical Record, 295, 1336–1351.

    Article  PubMed  Google Scholar 

  • Jhwueng, D. C. (2013). Assessing the goodness of fit of phylogenetic comparative methods: A meta-analysis and simulation study. PLoS ONE, 8, e67001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, W. E., Eizirik, E., Pecon-Slattery, J., Murphy, W. J., Antunes, A., Teeling, E., & O’Brien, S. J. (2006). The late miocene radiation of modern Felidae: A genetic assessment. Science, 311, 73–77.

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P. (2013). Visualizations in geometric morphometrics: how to read and how to make graphs showing shape changes. Hystrix, The Italian Journal of Mammalogy, 24, 15–24.

    Google Scholar 

  • Klingenberg, C. P. (2016). Size, shape, and form: concepts of allometry in geometric morphometrics. Development Genes and Evolution, 226, 113–137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klingenberg, C. P., Barluenga, M., & Meyer, A. (2002). Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution, 56, 1909–1920.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P., & Marugán-Lobón, J. (2013). Evolutionary covariation in geometric morphometric data: Analyzing integration, modularity, and allometry in a phylogenetic context. Systematic Biology, 62, 591–610.

    Article  PubMed  Google Scholar 

  • Linde-Medina, M. (2016). Testing the cranial evolutionary allometric ‘rule’ in Galliformes. Journal of Evolutionary Biology, 29, 1873–1878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus, L. F. (1990. Traditional morphometrics. In F. J. Rohlf & F. L. Bookstein (Eds.) Proceedings of the Michigan morphometrics workshop. (pp.77–122). Ann Arbor: University of Michigan Museum of Zoology

    Google Scholar 

  • Meachen-Samuels, J., & Van Valkenburgh, B. (2009a). Craniodental indicators of prey size preference in the Felidae. Biological Journal of the Linnean Society, 96, 784–799.

    Article  Google Scholar 

  • Meachen-Samuels, J., & Van Valkenburgh, B. (2009b). Forelimb indicators of prey-size preference in the Felidae. Biological Journal of the Linnean Society, 96, 729–744.

    Article  Google Scholar 

  • Meloro, C., & O’Higgins, P. (2011). Ecological adaptations of mandibular form in fissiped Carnivora. Journal of Mammalian Evolution, 18, 185–200.

    Article  Google Scholar 

  • Meloro, C., & Slater, G. J. (2012). Covariation in the skull modules of cats: The challenge of growing saber-like canines. Journal of Vertebrate Paleontology, 32, 677–685.

    Article  Google Scholar 

  • Mitteroecker, P., Gunz, P., & Windhager, S., et al. (2013). A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix, The Italian Journal of Mammalogy, 24, 59–66.

    Google Scholar 

  • Monteiro, L. (2013). Morphometrics and the comparative method: studying the evolution of biological shape. Hystrix, The Italian Journal of Mammalogy, 24, 25–32.

    Google Scholar 

  • Nowak, R. M. (2005). Walker’s carnivores of the world. Baltimore: JHU Press.

    Google Scholar 

  • Nowak, K., Cardini, A., & Elton, S. (2008). Evolutionary acceleration and divergence in Procolobus kirkii. International Journal of Primatology, 29, 1313.

    Article  Google Scholar 

  • Nowell, K. (2002). Revision of the Felidae red list of threatened species. Cat News, 37, 4–6.

    Google Scholar 

  • Nowell, K., Jackson, P., et al. (1996). Wild cats: status survey and conservation action plan. Gland: IUCN.

    Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics (Oxford, England), 20, 289–290.

    Article  CAS  Google Scholar 

  • Pearson, A., Groves, C., & Cardini, A. (2015). The ‘temporal effect’ in hominids: Reinvestigating the nature of support for a chimp-human clade in bone morphology. Journal of Human Evolution, 88, 146–159.

    Article  PubMed  Google Scholar 

  • Piras, P., Maiorino, L., Teresi, L., Meloro, C., Lucci, F., Kotsakis, T., & Raia, P. (2013). Bite of the cats: Relationships between functional integration and mechanical performance as revealed by mandible geometry. Systematic Biology, 62(6), 878–900.

    Article  PubMed  Google Scholar 

  • R Core Team. (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved http://www.R-project.org.

  • Randau, M., Carbone, C., & Turvey, S. T. (2013). Canine evolution in sabretoothed carnivores: Natural selection or sexual selection? PLoS ONE, 8, e72868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlf, F. J. (2006). A comment on phylogenetic correction. Evolution, 60, 1509–1515.

    Article  PubMed  Google Scholar 

  • Rohlf, F. J. (2015). The tps series of software. Hystrix, The Italian Journal of Mammalogy, 26, 9–12.

    Google Scholar 

  • Rohlf, F. J., & Slice, D. (1990). Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39, 40–59.

    Google Scholar 

  • Sakamoto, M., & Ruta, M. (2012). Convergence and divergence in the evolution of cat skulls: Temporal and spatial patterns of morphological diversity. PLoS ONE, 7, e39752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson, J. G., & Watson, P. (2011). Small wild cats: The animal answer guide. Baltimore: JHU Press.

    Google Scholar 

  • Segura, V., Prevosti, F., & Cassini, G. (2013). Cranial ontogeny in the Puma lineage, Puma concolor, Herpailurus yagouaroundi, and Acinonyx jubatus (Carnivora: Felidae): A threedimensional geometric morphometric approach. Zoological Journal of the Linnean Society, 169, 235–250.

    Article  Google Scholar 

  • Segura, V., Cassini, G., & Prevosti, F. (2016). Three-dimensional cranial ontogeny in pantherines (P. leo, P. onca, P. pardus, P. tigris; Carnivora:, Felidae. Biological Journal of the Linnaean Society.

  • Sicuro, F. L. (2011). Evolutionary trends on extant cat skull morphology (Carnivora: Felidae): A three-dimensional geometrical approach. Biological Journal of the Linnean Society, 103, 176–190.

    Article  Google Scholar 

  • Sicuro, F. L., & Oliveira, L. F. B. (2011). Skull morphology and functionality of extant Felidae (Mammalia: Carnivora): A phylogenetic and evolutionary perspective. Zoological Journal of the Linnean Society, 161, 414–462.

    Article  Google Scholar 

  • Sims, M. E. (2012). Cranial morphology of five felids: Acinonyx jubatus, Panthera onca, Panthera pardus, Puma concolor, Uncia uncia. Russian Journal of Theriology, 11, 157–170.

    Article  Google Scholar 

  • Slater, G. J., & Van Valkenburgh, B. (2008). Long in the tooth: Evolution of sabertooth cat cranial shape. Paleobiology, 34, 403–419.

    Article  Google Scholar 

  • Slater, G. J., & Van Valkenburgh, B. (2009). Allometry and performance: the evolution of skull form and function in felids. Journal of Evolutionary Biology, 22, 2278–2287.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., Yamashita, M., & Shigehara, N. (2006). Cranial photographs of mammals on the web: the Mammalian Crania Photographic Archive (MCPA2) and a comparison of bone image databases. Anthropological Science, 114, 217–222.

    Article  Google Scholar 

  • Viscosi, V., & Cardini, A. (2011). Leaf morphology, taxonomy and geometric morphometrics: A simplified protocol for beginners. PLoS ONE, 6, e25630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warton, D. I., Duursma, R. A., Falster, D. S., et al. (2012). smatr 3—An R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257–259.

    Article  Google Scholar 

  • Warton, D. I., Wright, I. J., Falster, D. S., et al. (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259–291.

    Article  PubMed  Google Scholar 

  • Werdelin, L. (1983). Morphological patterns in the skulls of cats. Biological Journal of the Linnean Society, 19, 375–391.

    Article  Google Scholar 

  • Werdelin, L., Yamaguchi, N., Johnson, W. E., et al. (2010). Phylogeny and evolution of cats (Felidae). Biology and conservation of wild felids. (pp. 59–82) Oxford: Oxford University Press.

    Google Scholar 

  • Wilson, D. E., & Reeder, D. M. (2005). Mammal species of the world: A taxonomic and geographic reference. Baltimore: JHU Press.

    Google Scholar 

  • Wilting, A., Christiansen, P., Kitchener, A. C., et al. (2011). Geographical variation in and evolutionary history of the Sunda clouded leopard (Neofelis diardi) (Mammalia: Carnivora: Felidae) with the description of a new subspecies from Borneo. Molecular Phylogenetics and Evolution, 58, 317–328.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to all scientists and institutions who made pictures of crania freely available on their websites, and also to Mike Collyer and Dean Adams for help with geomorph, to Marko Djurakic for suggestions on R scripts, and to Jim Rohlf and Liam Revell for their advice on MA regressions. We are in debt also to SYNTHESYS, an EC-funded Project for an integrated European infrastructure for natural history collections, for supporting both the previous study on CREA in placentals and its follow up in 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cardini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 20 KB)

Supplementary material 2 (XLS 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamagnini, D., Meloro, C. & Cardini, A. Anyone with a Long-Face? Craniofacial Evolutionary Allometry (CREA) in a Family of Short-Faced Mammals, the Felidae. Evol Biol 44, 476–495 (2017). https://doi.org/10.1007/s11692-017-9421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-017-9421-z

Keywords

Navigation