Evolutionary Biology

, Volume 44, Issue 3, pp 401–410 | Cite as

Diverse Evidence for the Decline of an Adaptation in a Coral Snake Mimic

Research Article

Abstract

Losses of adaptations in response to changed selective pressures are evolutionarily important phenomena but relatively few empirical examples have been investigated in detail. To help fill this gap, we took advantage of a natural experiment in which coral snake mimics occur on two nearby tropical islands, one that has coral snake models (Trinidad) and one that lacks them (Tobago). On Tobago, an endemic coral snake mimic (Erythrolamprus ocellatus) exists but has a relatively poor resemblance to coral snakes. Quantitative image analysis of museum specimens confirmed that E. ocellatus is a poor mimic of coral snakes. To address questions related to the functional importance of this phenotype, we conducted a field experiment on both islands with snake replicas made of clay. These results clearly indicated a strong inter-island difference in predator attack rates where snake replicas that resembled coral snakes received protection in Trinidad but not in Tobago. Further, a molecular phylogenetic analysis of the ancestry of E. ocellatus revealed that this poor coral snake mimic is deeply nested in a clade of good coral snake mimics. These data suggest that the lack of coral snakes on Tobago altered the selective environment such that the coral snake mimicry adaptation was no longer advantageous. The failure to maintain this ancestral feature in allopatry provides a compelling example of how losses of complex adaptations can occur.

Keywords

Allopatry Erythrolamprus Mimicry Loss Micrurus Reversal 

Notes

Acknowledgements

We thank L. Fawcett, S. Hackel and D. Raines for help in the field and we acknowledge the Trinidad Department of Forestry and the Tobago Department of Natural Resources and the Environment for issuing research and collection permits. We extend appreciation to S. Mastrandrea, T. Mastrandrea, M. McCaffrey and M. Hodson for assisting greatly in the construction of the clay snakes. We thank G. Schneider (UMMZ), L. Vonnahme and D. Kizirian (AMNH) and K. de Queiroz and J. Poindexter (USNM) for museum specimen photographs. Thanks also go to the Royal Ontario Museum (R.W. Murphy), the California Academy of Science (J. Vindum) and the Louisiana State University Museum of Natural Science (D. Dittman) for tissue loans. The College of Wooster IACUC approved the methodologies used in this project. Funding was provided by the Henry Luce Fund, the Copeland Fund, and Presidential Discretionary Funds at The College of Wooster.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

11692_2017_9418_MOESM1_ESM.xlsx (11 kb)
Supplementary material 1 (XLSX 10 KB)

References

  1. Abramoff, M. D., Magalhaes, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11, 36–42.Google Scholar
  2. Abzhanov, A., Kuo, W. P., Hartmann, C., Grant, B. R., Grant, P. R., & Tabin, C. J. (2006). The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature, 442, 563–567.CrossRefPubMedGoogle Scholar
  3. Bates, H. W. (1862). Contributions to an insect fauna of the Amazon valley (Lepidoptera: Heliconidae). Transactions of the Linnean Society of London, 23, 495–566.CrossRefGoogle Scholar
  4. Blount, Z. D., Borland, C. Z., & Lenski, R. E. (2008). Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proceedings of the National Academy of Sciences, 105, 7899–7906.CrossRefGoogle Scholar
  5. Boos, H.E.A. (2001). The Snakes of Trinidad and Tobago. Texas: Texas A&M University Press.Google Scholar
  6. Brodie, E. D. III (1993). Differential avoidance of coral snake banded patterns by free-ranging avian predators in Costa Rica. Evolution, 47, 227–235.CrossRefPubMedGoogle Scholar
  7. Brodie, E. D. III, & Janzen, F. J. (1995). Experimental studies of coral snake mimicry: generalized avoidance of ringed snake patterns by free-ranging avian predators. Functional Ecology, 9, 186–190.CrossRefGoogle Scholar
  8. Brooke, M. de L., Davies, N. B., & Noble, D. G. (1998). Rapid decline of host defences in response to reduced cuckoo parasitism: Behavioural flexibility of reed warblers in a changing world. Proceedings of the Royal Society of London B: Biological Sciences, 265, 1277–1282.Google Scholar
  9. Brower, J. V. (1960). Experimental studies of mimicry. IV. The reactions of starlings to different proportions of models and mimics. American Naturalist, 94, 271–282.CrossRefGoogle Scholar
  10. Cox, C. L., Davis-Rabosky, A. R., Reyes-Velasco, J., Ponce-Campos, P., Smith, E. N., Flores-Villela, O., & Campbell, J. A. (2012). Molecular systematics of the genus Sonora (Squamata: Colubridae) in central and western Mexico. Systematics and Biodiversity, 10, 93–108.CrossRefGoogle Scholar
  11. Cruz, A., & Wiley, J. W. (1989). The decline of an adaptation in the absence of a presumed selective pressure. Evolution, 43, 55–62.CrossRefPubMedGoogle Scholar
  12. Cuthill, I. C., & Bennett A. T. D. (1993). Mimicry and the eye of the beholder. Proceedings of the Royal Society of London Series B: Biological Sciences, 253, 203–204.CrossRefGoogle Scholar
  13. Davis-Rabosky, A. R., Cox, C. L., Rabosky, D. L., Title, P. O., Holmes, I. A., Feldman, A., & McGuire, J. A. (2016). Coral snakes predict the evolution of mimicry across New World snakes. Nature Communications. doi: 10.1038/ncomms11484.PubMedPubMedCentralGoogle Scholar
  14. Dittrich, W., Gilbert, F., Green, P., Mcgregor, P., & Grewcock, D. (1993). Imperfect mimicry: A pigeon’s perspective. Proceedings of the Royal Society of London B: Biological Sciences, 251, 195–200.CrossRefGoogle Scholar
  15. Edmunds, M. (2000). Why are there good and poor mimics? Biological Journal of the Linnean Society, 70, 459–466.CrossRefGoogle Scholar
  16. Emsley, M. G. (1966a). The mimetic significance of Erythrolamprus aesculapii ocellatus Peters from Tobago. Evolution, 20, 663–664.CrossRefPubMedGoogle Scholar
  17. Emsley, M. G. (1966b). The status of the snake Erythrolamprus ocellatus Peters. Copeia, 1966, 128–129.CrossRefGoogle Scholar
  18. Fong, D. W., Kane, T. C., & Culver, D. C. (1995). Vestigialization and loss of nonfunctional characters. Annual Review of Ecology and Systematics, 26, 249–268.CrossRefGoogle Scholar
  19. Grant, P. R., & Grant, B. R. (2011). How and why species multiply: The radiation of Darwin’s finches. Princeton: Princeton University Press.Google Scholar
  20. Greene, H. W., & McDiarmid, R. W. (1981). Coral snake mimicry: Does it occur? Science, 213, 1207–1212.CrossRefPubMedGoogle Scholar
  21. Greene, H. W., & McDiarmid, R. W. (2005). Wallace and Savage: Heroes, theories and venomous snake mimicry. In M. A. Donnelly, B. I. Crother, C. Guyer, M. H. Wake, & M. E. White (Eds.), Ecology and evolution in the tropics: A herpetological perspective. (pp. 190–208). Illinois, Chicago: University of Chicago Press.Google Scholar
  22. Harper, G. R. Jr., & Pfennig, D. W. (2007). Mimicry on the edge: Why do mimics vary in the resemblance to their model in different parts of their geographic range? Proceedings of the Royal Society, 274, 1955–1961.CrossRefGoogle Scholar
  23. Harper, G. R. Jr., & Pfennig, D. W. (2008). Selection overrides gene flow to break down maladaptive mimicry. Nature, 451, 1103–1106.CrossRefPubMedGoogle Scholar
  24. Hinman, K. E., Throop, H. L., Adams, K. L., Dake, A. J., McLauchlan, K. K., & McKone, M. J. (1997). Predation by free-ranging birds on partial coral snake mimics: The importance of ring width and color. Evolution, 51, 1011–1014.CrossRefPubMedGoogle Scholar
  25. Jiang, X., Lonsdale, D. J., & Gobler, C. J. (2011). Rapid gain and loss of evolutionary resistance to the harmful dinoflagellate Cochlodinium polykrikoides in the copepod Acartia tonsa. Limnology and Oceanography, 56, 947–954.CrossRefGoogle Scholar
  26. Jowers, M. J., Lehtinen, R. M., Downie, J. R., Georgiadis, A. P., & Murphy, J. C. (2014). Molecular phylogenetics of the glass frog Hyalinobatrchium orientale (Anura: Centrolenidae): Evidence for Pliocene connections between mainland Venezuela and the island of Tobago. Mitochondrial DNA. doi: 10.3109/19401736.2014.880888.PubMedGoogle Scholar
  27. Kikuchi, D. W., & Pfennig, D. W. (2010). Predator cognition permits imperfect coral snake mimicry. American Naturalist, 176, 830–834.CrossRefPubMedGoogle Scholar
  28. Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.CrossRefPubMedGoogle Scholar
  29. Lehtinen, R. M., Wojtowicz, E. A., & Hailey, A. (2011). Male vocalizations, female discrimination and molecular phylogeny: Multiple perspectives on the taxonomic status of a critically endangered Caribbean frog. Journal of Zoology, 283, 117–125.CrossRefGoogle Scholar
  30. Levinton, J. S., Suatoni, E., Wallace, W., Junkins, R., Kelaher, B., & Allen, B. J. (2003). Rapid loss of genetically based resistance to metals after the cleanup of a Superfund site. Proceedings of the National Academy of Sciences of the United States of America, 100, 9889–9891.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Losos, J. B. (2009). Lizards in an evolutionary tree: Ecology and adaptive radiation of anoles. Berkeley: University of California Press.Google Scholar
  32. Müller, F. (1878). Ueber die Vortheile der Mimicry bei Schmetterlingen. Zoologischer Anzeiger, 1, 54–55.Google Scholar
  33. Murphy, J. C. (1997). Amphibians and reptiles of Trinidad and Tobago. Malabar: Krieger Publishing Company.Google Scholar
  34. Noonan, B. P., & Chippindale, P. T. (2006). Dispersal and vicariance: The complex evolutionary history of boid snakes. Molecular Phylogenetics and Evolution, 40, 347–358.CrossRefPubMedGoogle Scholar
  35. Pekár, S., Jarab, M., Fromhage, L., & Herberstein, M. E. (2011). Is the evolution of inaccurate mimicry a result of selection by a suite of predators? A case study using myrmecomorphic spiders. American Naturalist, 178, 124–134.CrossRefPubMedGoogle Scholar
  36. Pfennig, D. W., Harcombe, W. R., & Pfennig, K. S. (2001). Frequency-dependent Batesian mimicry. Nature, 410, 323–323.CrossRefPubMedGoogle Scholar
  37. Pfennig, D. W., Harper, G. R. Jr., Brumo, A. F., Harcombe, W. R., & Pfennig, K. S. (2007). Population differences in predation on Batesian mimics in allopatry with their model: Selection against mimics is strongest when they are common. Behavioral Ecology and Sociobiology, 61, 505–511.CrossRefGoogle Scholar
  38. Pfennig, D. W., & Kikuchi, D. W. (2012). Competition and the evolution of imperfect mimicry. Current Zoology, 58, 608–619.CrossRefGoogle Scholar
  39. Pfennig, D. W., & Mullen, S. P. (2010). Mimics without models: Causes and consequences of allopatry in Batesian mimicry complexes. Proceedings of the Royal Society, 277, 2577–2587.CrossRefGoogle Scholar
  40. Prudic, K. L., & Oliver, J. C. (2008). Once a Batesian mimic, not always a Batesian mimic: Mimic reverts back to ancestral phenotype when the model is absent. Proceedings of the Royal Society, 275, 1125–1132.CrossRefGoogle Scholar
  41. Ronquist, F., Huelsenbeck, J. & Teslenko, M. (2011). MrBayes version 3.2 Manual: Tutorials and Model Summaries. Online resource. http://mrbayes.sourceforge.net/.
  42. Ruxton, G. D., Sherratt, T. N., & Speed, M. P. (2004). Avoiding attack: The evolutionary ecology of crypsis, warning signals and mimicry. Oxford: Oxford University Press.CrossRefGoogle Scholar
  43. Savage, J. M., & Slowinski, J. B. (1992). The colouration of the venomous coral snakes (family Elapidae) and their mimics (families Aniliidae and Colubridae). Biological Journal of the Linnean Society, 45, 235–254.CrossRefGoogle Scholar
  44. Speed, M. P. (1999). Batesian, quasi-Batesian or Müllerian mimicry? Theory and data in mimicry research. Evolutionary Ecology, 13, 755–776.CrossRefGoogle Scholar
  45. Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th edn.). Boston: Pearson Education.Google Scholar
  46. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Thompson, J. N. (1998). Rapid evolution as an ecological process. Trends in Ecology & Evolution, 13, 329–332.CrossRefGoogle Scholar
  48. Uetz, P. (Ed.), The Reptile Database, Retrieved April 1, 2017 from http://www.reptile-database.org.
  49. Wallace, A. R. (1867). Mimicry and other protective resemblances among animals. The West Minster and Foreign Quarterly Review, New Series, 32, 1–43.Google Scholar
  50. Zaher, H., Grazziotin, F. G., Cadle, J. E., Murphy, R. W., Moura-Leite, J. C. D., & Bonatto, S. L. (2009). Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: A revised classification and descriptions of new taxa. Papéis Avulsos de Zoologia (São Paulo), 49, 115–153.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of BiologyThe College of WoosterWoosterUSA
  2. 2.Emory University Rollins School of Public HealthAtlantaUSA

Personalised recommendations