Skip to main content
Log in

Phylogenetic Hypotheses: Neither Testable Nor Falsifiable

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Crother and Murray (Cladistics 31: 573–574, 2015) criticize the statement by Assis (Cladistics 30: 240–242, 2014) that phylogenetic hypotheses are amenable to testing but not falsification. The claims by both sets of authors are based on long-standing misconceptions about testing developed within systematics. Testing phylogenetic hypotheses confuses the inferences of those hypotheses by way of abductive reasoning with their being tested via induction. Cladograms lack the causal details of the different hypotheses implied by those diagrams to make testing feasible, and falsification has been shown to be problematic for historical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achinstein, P. (1970). Inference to scientific laws. In R. H. Stuewer (Ed.), Volume V: Historical and philosophical perspectives of science (pp. 87–111). Minnesota: Minnesota Studies in the Philosophy of Science, University of Minnesota Press.

    Google Scholar 

  • Aliseda, A. (2006). Abductive reasoning: Logical investigations into discovery and explanation. Dordrecht: Springer.

    Google Scholar 

  • Ariew, A. (2003). Ernst Mayr’s ‘ultimate/proximate’ distinction reconsidered and reconstructed. Biology and Philosophy, 18, 553–565.

    Article  Google Scholar 

  • Assis, L. C. S. (2014). Testing evolutionary hypotheses: From Willi Hennig to Angiosperm phylogeny group. Cladistics, 30, 240–242.

    Article  Google Scholar 

  • Baker, V. R. (1996). Hypotheses and geomorphological reasoning. In B. L. Rhoads & C. E. Thorn (Eds.), The scientific nature of geomorphology: Proceedings of the 27th Binghamton symposium in geomorphology held 27–29 September 1996 (pp. 57–85). New York: Wiley.

    Google Scholar 

  • Barnes, E. (1994). Why P rather than Q? The curiosities of fact and foil. Philosophical Studies, 73, 35–53.

    Article  Google Scholar 

  • Beatty, J. (1994). The proximate/ultimate distinction in the multiple careers of Ernst Mayr. Biolology and Philosophy, 9, 333–356.

    Article  Google Scholar 

  • Ben-Menahem, Y. (1990). The inference to the best explanation. Erkenntnis, 33, 319–344.

    Article  Google Scholar 

  • Bromberger, S. (1966). Why-questions. In R. G. Colodny (Ed.), Mind and cosmos: Essays in contemporary science and philosophy. University of Pittsburgh series in the philosophy of science, 3 (pp. 86–111). Pittsburgh: University of Pittsburgh Press.

  • Brower, A. V. Z., & de Pinna, M. C. C. (2012). Homology and errors. Cladistics, 28, 529–538.

    Article  Google Scholar 

  • Cleland, C. E. (2001). Historical science, experimental science, and the scientific method. Geology, 29, 987–990.

    Article  Google Scholar 

  • Cleland, C. E. (2002). Methodological and epistemic differences between historical science and experimental science. Philosophy of Science, 69, 474–496.

    Article  Google Scholar 

  • Cleland, C. E. (2009). Philosophical issues in natural history and historiography. In A. Tucker (Ed.), A companion to the philosophy of history and historiography (pp. 44–62). Malden: Wiley.

    Chapter  Google Scholar 

  • Cleland, C. E. (2011). Prediction and explanation in historical natural science. British Journal for the Philosophy of Science, 62, 551–582.

    Article  Google Scholar 

  • Cleland, C. E. (2013). Common cause explanation and the search for a smoking gun. The Geological Society of America Special Papers, 502, 1–9.

    Article  Google Scholar 

  • Crother, B. I., & Murray, C. M. (2015). Testable but not falsifiable? Cladistics, 31, 573–574.

    Article  Google Scholar 

  • Curd, M. V. (1980). The logic of discovery: An analysis of three approaches. In T. Nickles (Ed.), Scientific discovery, logic and rationality (pp. 201–219). Dordrecht: D. Reidel Publishing.

    Chapter  Google Scholar 

  • Dawid, R. (2013). String theory and the scientific method. New York: Cambridge University Press.

    Book  Google Scholar 

  • de Queiroz, K. (2014). Popperian corroboration and phylogenetics. Systematic Biology, 63, 1018–1022.

    Article  PubMed  Google Scholar 

  • de Queiroz, K., & Poe, S. (2001). Philosophy and phylogenetic inference: A comparison of likelihood and parsimony methods in the context of Karl Popper’s writings on corroboration. Systematic Biology, 50, 305–321.

    Article  PubMed  Google Scholar 

  • de Queiroz, K., & Poe, S. (2003). Failed refutations: Further comments on parsimony and likelihood methods and their relationship to Popper’s degree of corroboration. Systematic Biology, 52, 322–330.

    Google Scholar 

  • de Regt, H. W., & Dieks, D. (2005). A contextual approach to scientific understanding. Synthese, 144, 137–170.

    Article  Google Scholar 

  • de Regt, H. W., Leonelli, S., & Eigner, K. (2009). Focusing on scientific understanding. In H. de Regt, S. Leonelli, & K. Eigner (Eds.), Scientific understanding: Philosophical perspectives (pp. 1–17). Pittsburgh: University of Press.

    Google Scholar 

  • Douven, I. (2002). Testing inference to the best explanation. Synthese, 130, 355–377.

    Article  Google Scholar 

  • Egan, M. G. (2006). Support versus corroboration. Journal of Biomedical Informatics, 39, 72–85.

    Article  CAS  PubMed  Google Scholar 

  • Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process: Method and theory in comparative biology. New York: Columbia University Press.

    Google Scholar 

  • Faith, D. P. (2004). From species to supertrees: Popperian corroboration and some current controversies in systematics. Australian Systematic Botany, 17, 1–16.

    Article  Google Scholar 

  • Faith, D. P. (2006). Science and philosophy for molecular systematics: Which is the cart and which is the horse? Molecular Phylogenetics and Evolution, 38, 553–557.

    Article  PubMed  Google Scholar 

  • Faith, D. P., & Cranston, P. S. (1992). Probability, parsimony, and Popper. Systematic Biology, 41, 252–257.

    Article  Google Scholar 

  • Faith, D. P., Köhler, F., Puslednik, L., & Ballard, J. W. O. (2011). Phylogenies with corroboration assessment. Zootaxa, 2946, 52–56.

    Google Scholar 

  • Faith, D. P., & Trueman, J. W. H. (2001). Towards an inclusive philosophy for phylogenetic inference. Systematic Biology, 50, 331–350.

    Article  CAS  PubMed  Google Scholar 

  • Fann, K. T. (1970). Peirce’s theory of abduction. The Hague: Martinus Nijhoff.

    Book  Google Scholar 

  • Farris, J. S., Kluge, A. G., & Carpenter, J. M. (2001). Popper and likelihood versus “Popper*”. Systematic Biology, 50, 438–444.

    Article  CAS  PubMed  Google Scholar 

  • Fitzhugh, K. (2005a). Les bases philosophiques de l’inférence phylogénétique: une vue d’ensemble. Biosystema, 24, 83–105.

    Google Scholar 

  • Fitzhugh, K. (2005b). The inferential basis of species hypotheses: The solution to defining the term ‘species’. Marine Ecology, 26, 155–165.

    Article  Google Scholar 

  • Fitzhugh, K. (2006a). The abduction of phylogenetic hypotheses. Zootaxa, 1145, 1–110.

    Google Scholar 

  • Fitzhugh, K. (2006b). The ‘requirement of total evidence’ and its role in phylogenetic systematics. Biology and Philosophy, 21, 309–351.

    Article  Google Scholar 

  • Fitzhugh, K. (2006c). The philosophical basis of character coding for the inference of phylogenetic hypotheses. Zoologica Scripta, 35, 261–286.

    Article  Google Scholar 

  • Fitzhugh, K. (2008a). Fact, theory, test and evolution. Zoologica Scripta, 37, 109–113.

    Article  Google Scholar 

  • Fitzhugh, K. (2008b). Abductive inference: Implications for ‘Linnean’ and ‘phylogenetic’ approaches for representing biological systematization. Evolutionary Biology, 35, 52–82.

    Article  Google Scholar 

  • Fitzhugh, K. (2008c). Clarifying the role of character loss in phylogenetic inference. Zoologica Scripta, 37, 561–569.

    Article  Google Scholar 

  • Fitzhugh, K. (2009). Species as explanatory hypotheses: Refinements and implications. Acta Biotheoretica, 57, 201–248.

    Article  PubMed  Google Scholar 

  • Fitzhugh, K. (2010). Evidence for evolution versus evidence for intelligent design: Parallel confusions. Evolutionary Biology, 37, 68–92.

    Article  Google Scholar 

  • Fitzhugh, K. (2012). The limits of understanding in biological systematics. Zootaxa, 3435, 40–67.

    Google Scholar 

  • Fitzhugh, K. (2013). Defining ‘species’, ‘biodiversity’, and ‘conservation’ by their transitive relations. In I. Y. Pavlinov (Ed.), The species problem—Ongoing problems (pp. 93–130). New York: InTech.

    Google Scholar 

  • Fitzhugh, K. (2014). Character mapping and cladogram comparison versus the requirement of total evidence: Does it matter for polychaete systematics? Memoires of Museum Victoria, 71, 67–78.

    Google Scholar 

  • Fitzhugh, K. (2015). What are species? Or, on asking the wrong question. The Festivus, 47, 229–239.

    Google Scholar 

  • Fitzhugh, K. (2016). Dispelling five myths about hypothesis testing in biological systematics. Organisms Diversity and Evolution,. doi:10.1007/s13127-016-0274-6.

    Google Scholar 

  • Franz, N. M. (2005). Outline of an explanatory account of cladistic practice. Biology and Philosophy, 20, 489–515.

    Article  Google Scholar 

  • Gaffney, E. S. (1979). An introduction to the logic of phylogeny reconstruction. In J. Cracraft & N. Eldredge (Eds.), Phylogenetic analysis and paleontology (pp. 79–111). New York: Columbia University Press.

    Google Scholar 

  • Godfrey-Smith, P. (2003). Theory and reality: An introduction to the philosophy of science. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Grandcolas, P., Deleporte, P. & Desutter-Grandcolas, L. (1997). Testing evolutionary processes with phylogenetic patterns: Test power and test limitations. In P. Grandcolas (Ed.) The origin of biodiversity in insects: Phylogenetic tests of evolutionary scenarios. Paris: Mémoires du Muséum National d’Histoire Naturelle, 173, 53–71.

  • Grant, T., & Kluge, A. G. (2008). Clade support measures and their adequacy. Cladistics, 24, 1051–1064.

    Article  Google Scholar 

  • Hacking, I. (2001). An introduction to probability and inductive logic. New York: Cambridge University Press.

    Book  Google Scholar 

  • Hanson, N. R. (1958). Patterns of discovery: An inquiry into the conceptual foundations of science. New York: Cambridge University Press.

    Google Scholar 

  • Harman, G. H. (1965). Inference to the best explanation. The Philosophical Review, 74, 88–95.

    Article  Google Scholar 

  • Hausman, D. M. (1998). Causal asymmetries. New York: Cambridge University Press.

    Book  Google Scholar 

  • Helfenbein, G. K., & DeSalle, R. (2005). Falsifications and corroborations: Karl Popper’s influence on systematics. Molecular Phylogenetics and Evolution, 35, 271–280.

    Article  PubMed  Google Scholar 

  • Hempel, C. G. (1965). Aspects of scientific explanation and other essays in the philosophy of science. New York: The Free Press.

    Google Scholar 

  • Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.

    Google Scholar 

  • Hoyningen-Huene, P. (2013). Systematicity: The nature of science. New York: Oxford University Press.

    Book  Google Scholar 

  • Jeffares, B. (2008). Testing times: Regularities in the historical sciences. Studies in History and Philosophy of Biological and Biomedical Sciences, 39, 469–475.

    Article  PubMed  Google Scholar 

  • Josephson, J. R., & Josephson, S. G. (Eds.). (1994). Abductive inference: Computation, philosophy, technology. New York: Cambridge University Press.

    Google Scholar 

  • Kluge, A. G. (1997a). Sophisticated falsification and research cycles: Consequences for differential character weighting in phylogenetic systematics. Zoologica Scripta, 26, 349–360.

    Article  Google Scholar 

  • Kluge, A. G. (1997b). Testability and the refutation and corroboration of cladistic hypotheses. Cladistics, 13, 81–96.

    Article  Google Scholar 

  • Kluge, A. G. (1999). The science of phylogenetic systematics: Explanation, prediction, and test. Cladistics, 15, 429–436.

    Article  Google Scholar 

  • Kluge, A. G. (2001). Philosophical conjectures and their refutation. Systematic Biology, 50, 322–330.

    Article  CAS  PubMed  Google Scholar 

  • Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W., & Uller, T. (2011). Cause and effect in biology revisited: Is Mayrs proximate-ultimate dichotomy still useful? Science, 334, 1512–1516.

    Article  CAS  PubMed  Google Scholar 

  • Lipton, P. (2004). Inference to the best explanation. New York: Routledge.

    Google Scholar 

  • Magnani, L. (2001). Abduction, reason, and science: Processes of discovery and explanation. New York: Kluwer Academic.

    Book  Google Scholar 

  • Mahner, M., & Bunge, M. (1997). Foundations of biophilosophy. New York: Springer.

    Book  Google Scholar 

  • Marwick, P. (1999). Interrogatives and contrasts in explanation theory. Philosophical Studies, 96, 183–204.

    Article  Google Scholar 

  • Mayo, D. G. (1991). Novel evidence and severe tests. Philosophy of Science, 58, 523–552.

    Article  Google Scholar 

  • Mayo, D. G. (1996). Error and the growth of experimental knowledge. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Mayo, D. G. (2005). Peircean induction and the error-correcting thesis. Transactions of the Charles S. Peirce Society, 41, 299–319.

    Google Scholar 

  • Mayr, E. (1961). Cause and effect in biology. Science, 131, 1501–1506.

    Article  Google Scholar 

  • Mayr, E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Cambridge: Harvard University Press.

    Google Scholar 

  • Mayr, E. (1993). Proximate and ultimate causation. Biology and Philosophy, 8, 95–98.

    Article  Google Scholar 

  • Mayr, E. (1994). Response to John Beatty. Biology and Philosophy, 9, 359–371.

    Article  Google Scholar 

  • McMullin, E. (1995). The inference that makes science. Milwaukee: Marquette University Press.

    Google Scholar 

  • Nickles, T. (1980). Introductory essay: Scientific discovery and the future of philosophy of science. In T. Nickles (Ed.), Scientific discovery, logic and rationality (pp. 1–59). Dordrecht: D. Reidel Publishing Company.

    Chapter  Google Scholar 

  • Nola, R., & Sankey, H. (2007). Theories of scientific method: An introduction. Ithaca: McGill-Queen’s University Press.

    Google Scholar 

  • Norton, J. D. (2003). A material theory of induction. Philosophy of Science, 70, 647–670.

    Article  Google Scholar 

  • Paavola, S. (2012). On the origin of ideas: An abductionist approach to discovery. Saarbrücken: Lap Lambert Academic Publishing.

    Google Scholar 

  • Peirce, C. S. (1878). Illustrations of the logic of science. Sixth paper.—Deduction, induction, and hypothesis. Popular Science Monthly, 13, 470–482.

    Google Scholar 

  • Peirce, C. S. (1931). In: C. Hartshorne, P. Weiss & A. Burks (Eds.), Collected Papers of Charles Sanders Peirce, Volume 1: Principles of Philosophy. Cambridge: Harvard University Press.

  • Peirce, C. S. (1932). In: C. Hartshorne, P. Weiss & A. Burks (Eds.), Collected Papers of Charles Sanders Peirce, Volume 2: Elements of Logic. Cambridge: Harvard University Press.

  • Peirce, C. S. (1933a). In C. Hartshorne, P. Weiss & A. Burks (Eds.), Collected Papers of Charles Sanders Peirce, Volume 3: Exact Logic. Cambridge: Harvard University Press.

  • Peirce, C. S. (1933b). In C. Hartshorne, P. Weiss & A. Burks (Eds.), Collected Papers of Charles Sanders Peirce, Volume 4: The Simplest Mathematics. Cambridge: Harvard University Press.

  • Peirce, C. S. (1934). In C. Hartshorne, P. Weiss & A. Burks (Eds.), Collected Papers of Charles Sanders Peirce, Volume 5: Pragmatism and Pragmaticism. Cambridge: Harvard University Press.

  • Peirce, C. S. (1935). In C. Hartshorne, P. Weiss & A. Burks (Eds.), Collected Papers of Charles Sanders Peirce, Volume 6: Scientific Metaphysics. Cambridge: Harvard University Press.

  • Peirce, C. S. (1958a). In C. Hartshorne, P. Weiss & A. Burks (Eds.), Collected Papers of Charles Sanders Peirce, Volume 7: Science and Philosophy. Cambridge: Harvard University Press.

  • Peirce, C. S. (1958b). In: A. Burks (Ed.), Collected Papers of Charles Sanders Peirce, Volume 8: Correspondence and Bibliography. Cambridge: Harvard University Press.

  • Popper, K. R. (1959). The logic of scientific discovery. New York: Basic Books.

    Google Scholar 

  • Popper, K. R. (1962). Conjectures and refutations: The growth of scientific knowledge. New York: Basic Books.

    Google Scholar 

  • Popper, K. R. (1971). The open society and its enemies, Volume 2: Hegel and Marx. Princeton: Princeton University Press.

  • Popper, K. R. (1983). Objective knowledge: An evolutionary approach. New York: Oxford University Press.

    Google Scholar 

  • Popper, K. R. (1988). The poverty of historicism. New York: Routledge.

    Google Scholar 

  • Popper, K. R. (1992). Realism and the aim of science. New York: Routledge.

    Google Scholar 

  • Psillos, S. (2002). Simply the best: A case for abduction. In A. C. Kakas & F. Sadri (Eds.), Computational logic: Logic programming and beyond (pp. 605–625). New York: Springer.

    Chapter  Google Scholar 

  • Psillos, S. (2006). Underdetermination thesis, Duhem-Quine thesis. In D. Borchert (Ed.), Encyclopedia of philosophy (2nd ed., Vol. 9, pp. 575–578). Detroit: Macmillan.

    Google Scholar 

  • Psillos, S. (2007). Philosophy of science A-Z. Edinburgh: University Press.

    Google Scholar 

  • Psillos, S. (2011). An explorer upon untrodden ground: Peirce on abduction. In D. Gabbay, S. Hartmann, & J. Woods (Eds.), The handbook of the history of logic (Vol. 10, pp. 117–151)., inductive logic Oxford: Elsevier.

    Google Scholar 

  • Reilly, F. E. (1970). Charles Peirce’s theory of scientific method. New York: Fordham University Press.

    Google Scholar 

  • Rescher, N. (1970). Scientific explanation. New York: The Free Press.

    Google Scholar 

  • Rescher, N. (1978). Peirce’s philosophy of science: Critical studies in his theory of induction and scientific method. Notre Dame: University of Notre Dame Press.

    Google Scholar 

  • Rieppel, O. (1988). Fundamentals of comparative biology. Boston: Birkhäuser Verlag.

    Google Scholar 

  • Salmon, W. C. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.

    Google Scholar 

  • Scholl, R., & Pigliucci, M. (2014). The proximate-ultimate distinction and evolutionary developmental biology: Causal irrelevance versus explanatory abstraction. Biology and Philosophy, 30, 653–670.

    Article  Google Scholar 

  • Schuh, R. T. (2000). Biological systematics: Principles and applications. Ithaca: Cornell University Press.

    Google Scholar 

  • Schuh, R. T., & Brower, A. V. Z. (2009). Biological systematics: Principles and applications (2nd ed.). Ithaca: Cornell University Press.

    Google Scholar 

  • Schurz, G. (2005). Explanations in science and the logic of why-questions: Discussion of the Halonen–Hintikka-approach and alternative proposal. Synthese, 143, 149–178.

    Article  Google Scholar 

  • Schurz, G. (2008). Patterns of abduction. Synthese, 164, 201–234.

    Article  Google Scholar 

  • Siddall, M. E., & Kluge, A. G. (1997). Probabilism and phylogenetic inference. Cladistics, 13, 313–336.

    Article  Google Scholar 

  • Sintonen, M. (2004). Reasoning to hypotheses: Where do questions come? Foundation of Science, 9, 249–266.

    Google Scholar 

  • Sober, E. (1986). Explanatory presupposition. Australasian Journal of Philosophy, 64, 143–149.

    Article  Google Scholar 

  • Sober, E. (1988). Reconstructing the past: Parsimony, evolution, and inference. Cambridge: The MIT Press.

    Google Scholar 

  • Strahler, A. N. (1992). Understanding science: An introduction to concepts and issues. Buffalo: Prometheus Books.

    Google Scholar 

  • Thagard, P. (1988). Computational philosophy of science. Cambridge: The MIT Press.

    Google Scholar 

  • Thagard, P. (2004). Rationality and science. In A. Mele & P. Rawlings (Eds.), Handbook of rationality (pp. 363–379). New York: Oxford University Press.

    Google Scholar 

  • Tucker, A. (2004). Our knowledge of the past: A philosophy of historiography. New York: Cambridge University Press.

    Book  Google Scholar 

  • Tucker, A. (2011). Historical science, over- and underdetermined: A study of Darwin’s inference of origins. British Journal for the Philosophy of Science, 62, 805–829.

    Article  Google Scholar 

  • Turner, D. (2007). Making prehistory: Historical science and the scientific realism debate. New York: Cambridge University Press.

    Book  Google Scholar 

  • Turner, D. (2013). Historical geology: Methodology and metaphysics. Geological Society of America Special Paper, 502, 1–9.

    Article  Google Scholar 

  • Van Fraassen, B. C. (1990). The scientific image. New York: Clarendon Press.

    Google Scholar 

  • Walton, D. (2004). Abductive reasoning. Tuscaloosa: The University of Alabama Press.

    Google Scholar 

  • Wenzel, J. W. (1997). When is a phylogenetic test good enough? In P. Grandcolas (Ed.) The origin of biodiversity in insects: Phylogenetic tests of evolutionary scenarios. Paris: Mémoires du Muséum National d’Histoire Naturelle, 173, 31–45.

  • Wheeler, Q. D. (2004). Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society B, 359, 571–583.

    Article  Google Scholar 

  • Wheeler, Q. D. (2010). Do we need to describe, name, and classify all species? In D. M. Williams & S. Knapp (Eds.), Beyond cladistics: The branching of a paradigm (pp. 67–75). Berkeley: University of California Press.

    Google Scholar 

  • Wheeler, Q., & Hamilton, A. (2014). The new systematics, the new taxonomy, and the future of biodiversity studies. In A. Hamilton (Ed.), The evolution of phylogenetic systematics (pp. 287–301). Los Angeles: University of California Press.

    Google Scholar 

  • Wiley, E. O. (1975). Karl R. Popper, systematics, and classification: A reply to Walter Bock and other evolutionary taxonomists. Systematic Zoology, 24, 233–243.

    Article  Google Scholar 

  • Wiley, E. O., & Lieberman, B. S. (2011). Phylogenetics: Theory and practice of phylogenetic systematics. Oxford: Wiley.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk Fitzhugh.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitzhugh, K. Phylogenetic Hypotheses: Neither Testable Nor Falsifiable. Evol Biol 43, 257–266 (2016). https://doi.org/10.1007/s11692-016-9381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-016-9381-8

Keywords

Navigation