Advertisement

Evolutionary Biology

, Volume 43, Issue 3, pp 344–355 | Cite as

Fruit Ripening Signals and Cues in a Madagascan Dry Forest: Haptic Indicators Reliably Indicate Fruit Ripeness to Dichromatic Lemurs

  • Kim Valenta
  • Chelsea N. Miller
  • Spencer K. Monckton
  • Amanda D. Melin
  • Shawn M. Lehman
  • Sarah A. Styler
  • Derek A. Jackson
  • Colin A. Chapman
  • Michael J. Lawes
Research Article

Abstract

Fruit ripeness can be indicated through changes in chromaticity, luminance, odor, hardness, and size to attract seed dispersing animals. We quantified these attributes for both ripe and unripe fruits of 31 lemur-dispersed plant species in Ankarafantsika National Park, a tropical dry forest in northwestern Madagascar. We used spectroscopy, gas-chromatography mass-spectrometry, and a modified force gauge to quantify chromaticity, luminance, odor, and hardness. We compared these traits between unripe and ripe fruits of each species to determine which traits reliably indicate fruit ripeness across species. Overall, ripe fruits were significantly heavier and softer than unripe fruits. Ripe fruits were not more chromatically-conspicuous or odiferous relative to unripe fruits, nor were ripe fruits more conspicuous in the luminance channel. Contrary to expectation, our findings indicate that, in this particular system, plant-lemur interactions may be strongly mediated by haptic traits, such as fruit hardness, which are consistent and reliable indicators of fruit ripeness. Despite the potential importance of haptic indicators of fruit ripeness, they are underrepresented in the literature on sensory ecology.

Keywords

Animal-plant interactions Madagascar Fruit color Fruit hardness Fruit size Fruit odor Plant development Plant life history traits Seed dispersal Tropical dry forest 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11692_2016_9374_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 25 kb)

References

  1. Allen, G. (1879). The colour-sense: Its origin and development. London: Trubner.Google Scholar
  2. Backlund, M., Oxelman, B., & Bremer, B. (2000). Phylogenetic relationships within the Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae. American Journal of Botany, 87, 1029–1043.CrossRefPubMedGoogle Scholar
  3. Barton, R. A., Purvis, A., & Harvey, P. H. (1995). Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philosophical Transactions of the Royal Society of London B, 348, 381–392.CrossRefGoogle Scholar
  4. Bianconi, G. V., Suckow, U., Cruz-Neto, A. P., & Mikich, S. B. (2012). Use of fruit essential oils to assist forest regeneration by bats. Restoration Ecology, 20, 211–217.CrossRefGoogle Scholar
  5. Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learning Research, 13, 1063–1095.Google Scholar
  6. Bielby, J., Cardillo, M., Cooper, N., & Purvis, A. (2010). Modelling extinction risk in multispecies data sets: Phylogenetically independent contrasts versus decision trees. Biodiversity and Conservation, 19, 113–127.CrossRefGoogle Scholar
  7. Blomberg, S. P., Garland, T, Jr, & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745.CrossRefPubMedGoogle Scholar
  8. Bollen, A. (2007). Fruit characteristics: fruit selection, animal seed dispersal and conservation matters in the Sainte Luce forests. In J. U. Ganzhorn, S. M. Goodman, & M. Vincelette (Eds.), Biodiversity, ecology, and conservation of littoral ecosystems in the region of Tolagnaro (Fort Dauphin), southeastern Madagascar (pp. 127–145). Washington DC: Smithsonian Institution.Google Scholar
  9. Brady, C. J. (1987). Fruit ripening. Annual Review of Plant Physiology, 38, 155–178.CrossRefGoogle Scholar
  10. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.CrossRefGoogle Scholar
  11. Bremer, B., & Eriksson, T. (2009). Time tree of Rubiaceae: Phylogeny and dating the family, subfamilies, and tribes. International Journal of Plant Science, 170, 766–793.CrossRefGoogle Scholar
  12. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer.Google Scholar
  13. Carvalho, L. S., Davies, W. L., Robinson, P. R., & Hunt, D. M. (2012). Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proceedings of the Royal Society of London, B, 279, 387–393.CrossRefGoogle Scholar
  14. Cazetta, E., Schaefer, H. M., & Galetti, M. (2009). Why are fruits colorful? The relative importance of achromatic and chromatic contrasts for detection by birds. Evolutionary Ecology, 23(2), 233–244.CrossRefGoogle Scholar
  15. Chapman, C. A., & Chapman, L. (1996). Frugivory and the fate of dispersed and non-dispersed seeds of six African tree species. Journal of Tropical Ecology, 12, 491–504.CrossRefGoogle Scholar
  16. Chase, M. W., & Reveal, J. L. (2009). A phylogenetic classification of the land plants to accompany APG III. Botanical Journal of the Linnean Society, 161, 122–127.CrossRefGoogle Scholar
  17. Corlett, R. T. (2011). How to be a frugivore (in a changing world). Acta Oecologia, 37, 1–8.CrossRefGoogle Scholar
  18. Dambroski, H. R., Linn, C. E, Jr, Berlocher, S. H., Forbes, A. A., Roelofs, W. L., & Feder, J. L. (2005). The genetic basis for fruit odor discrimination in Rhagoletis flies and its significance for sympatric host speciation. Evolution, 59, 1953–1964.CrossRefPubMedGoogle Scholar
  19. Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H., & Ceballos, G. (2009). Multiple ecological pathways to extinction in mammals. Proceedings of the National Academy of Sciences, 106, 10702–10705.CrossRefGoogle Scholar
  20. Dew, J. L., & Wright, P. (1998). Frugivory and seed dispersal by four species of primates in Madagascar’s eastern rainforest. Biotropica, 30, 425–437.CrossRefGoogle Scholar
  21. Dominy, N. J. (2004). Fruits, fingers, and fermentation: The sensory cues available to foraging primates. Integrative and Comparative Biology, 44, 295–303.CrossRefPubMedGoogle Scholar
  22. Dominy, N. J., Lucas, P. W., Osorio, D., & Yamashita, N. (2001). The sensory ecology of primate food perception. Evolutionary Anthropology, 10, 171–186.CrossRefGoogle Scholar
  23. Farris, J. S. (1989). The retention index and the resclaed consistency index. Cladistics, 5, 417–419.CrossRefGoogle Scholar
  24. Fischer, K., & Chapman, C. (1993). Frugivores and fruit syndromes: Differences in patterns at the genus and species level. Oikos, 66, 472–482.CrossRefGoogle Scholar
  25. Florchinger, M., Braun, J., Bohning-Gaese, K., & Schaefer, H. M. (2010). Fruit size, crop mass, and plant height explain differential fruit choice of primates and birds. Oecologia, 164, 151–161.CrossRefPubMedGoogle Scholar
  26. Gadek, P. H., Fernando, E. S., Quinn, C. J., Hoot, S. B., Terrazas, T., Sheahan, M. C., & Chase, M. W. (1996). Sapindales: Molecular delimitation and infraordinal groups. American Journal of Botany, 83, 802–811.CrossRefGoogle Scholar
  27. Ganzhorn, J. U., Fietz, J., Rakotovao, E., Schwab, D., & Zinner, D. (1999). Lemurs and the regeneration of dry deciduous forest in Madagascar. Conservation Biology, 13, 794–804.CrossRefGoogle Scholar
  28. Gautier-Hion, A., Duplantier, J. M., Quris, R., Feer, F., Sourd, C., Decoux, J. P., et al. (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia, 65, 324–337.CrossRefGoogle Scholar
  29. Gilad, Y., Wiebe, V., Przeworski, M., Lancet, D., & Paabo, S. (2004). Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biology, 2, 120–125.CrossRefGoogle Scholar
  30. Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: Sensory cues for health and nutritional value? Science, 311(5762), 815–819.CrossRefPubMedGoogle Scholar
  31. Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.CrossRefGoogle Scholar
  32. Herrera, C. M. (1985). Determinants of plant-animal coevolution: The case of mutualistic dispersal of seeds by vertebrates. Oikos, 44, 132–141.CrossRefGoogle Scholar
  33. Hiramatsu, C., Melin, A. D., Aureli, F., Schaffner, C. M., Vorobyev, M., Matsumoto, Y., & Kawamura, S. (2008). Importance of achromatic contrast in short-range fruit foraging of primates. PLoS One, 3, e3356.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hirsch, B. T. (2010). Tradeoff between travel speed and olfactory food detection in ring-tailed coatis (Nasua nasua). Ethology, 116, 671–679.Google Scholar
  35. Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15, 651–674.CrossRefGoogle Scholar
  36. Howe, H. F., & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201–228.CrossRefGoogle Scholar
  37. Jacobs, G. H., & Deegan, J. F. (1993). Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus). American Journal of Primatology, 30, 243–256.CrossRefGoogle Scholar
  38. Jacobson, M. (1978). Handbook of sensory physiology: Development of sensory systems. New York: Springer.Google Scholar
  39. Janson, C. H. (1983). Adaptation of fruit morphology to dispersal agents in a neotropical forest. Science, 219, 187–189.CrossRefPubMedGoogle Scholar
  40. Jordano, P. (1995). Angiosperm fleshy fruits and seed dispersers: A comparative analysis of adaptation and constraints in plant-animal interactions. American Naturalist, 145, 163–191.CrossRefGoogle Scholar
  41. Kinzey, W. G., & Norconk, M. A. (1990). Hardness as a basis of fruit choice in two sympatric primates. American Journal of Physical Anthropology, 81, 5–15.CrossRefPubMedGoogle Scholar
  42. Knight, R. S., & Siegfried, W. R. (1983). Inter-relationships between type, size, and colour of fruits and dispersal in southern African trees. Oecologia, 56, 405–412.CrossRefGoogle Scholar
  43. Korine, C., & Kalko, E. K. V. (2005). Fruit detection and discrimination by small fruit-eating bats (Phyllostomidae): Echolocation call design and olfaction. Behavioral Ecology and Sociobiology, 59, 12–23.CrossRefGoogle Scholar
  44. Lahann, P. (2007). Biology of Cheirogaleus major in a littoral rain forest in southeast Madagascar. International Journal of Primatology, 28, 895–905.CrossRefGoogle Scholar
  45. Lambert, J. E., Chapman, C. A., Wrangham, R. W., & Conklin-Brittain, N. L. (2004). The hardness of cercopithecine foods: Implications for the critical function of enamel thickness in exploiting fallback foods. American Journal of Physical Anthropology, 125, 363–368.CrossRefPubMedGoogle Scholar
  46. Langrand, O. (1990). Guide to the birds of Madagascar. New Haven: Yale University Press.Google Scholar
  47. Laska, M., Liesen, A., & Teubner, P. (1999). Enantioselectivity of odor perception in squirrel monkeys and humans. American Journal of Physiology, 277, 1098–1103.Google Scholar
  48. Liaw, A., & Wiener, M. (2002). Classification and regression by Random Forest. R News, 2, 18–22.Google Scholar
  49. Linn, C. E, Jr, Dambroski, H. R., Feder, J. L., Berlocher, S. H., Nojima, S., & Roelofs, W. L. (2004). Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: reduced response of hybrids to parental host-fruit odors. Proceedings of the National Academy of Sciences, 101, 17753–17758.CrossRefGoogle Scholar
  50. Lomascolo, S., Levey, D., Kimball, R., Bolker, B., & Alborn, H. (2010). Dispersers shape fruit diversity in Ficus (Moraceae). Proceedings of the National Academy of Sciences, 107, 14668–14672.CrossRefGoogle Scholar
  51. Lucas, P. W., & Corlett, R. T. (1998). Seed dispersal by long-tailed macaques. American Journal of Primatology, 45, 29–44.CrossRefPubMedGoogle Scholar
  52. Melin, A. D., Fedigan, L. M., Hiramatsu, C., & Kawamura, S. (2008). Polymorphic color vision in white-faced capuchins (Cebus capucinus): Is there foraging niche divergence among phenotypes? Behavioral Ecology and Sociobiology, 62, 659–670.CrossRefGoogle Scholar
  53. Melin, A. D., Moritz, G. L., Fosbury, R. A., Kawamura, S., & Dominy, N. J. (2012). Why aye-ayes see blue. American Journal of Primatology, 74, 185–192.CrossRefPubMedGoogle Scholar
  54. Mittermeier, C. G., Louis, E. E., Richardson, M., Schwitzer, C., Langrand, O., Rylands, A. B., et al. (2010). Lemurs of Madagascar. Bogota: Conservation International.Google Scholar
  55. Murray, K. A., Rosauer, D., McCallum, H., & Skerratt, L. F. (2011). Integrating species traits with extrinsic threats: closing the gap between predicting and preventing species declines. Proceedings of the Royal Society B: Biological Sciences, 278, 1515–1523.CrossRefPubMedGoogle Scholar
  56. Nazar, N., Goyder, D. J., Clarkson, J. J., Mahmood, T., & Chase, M. W. (2012). The taxonomy and systematics of Apocynaceae: Where we stand in 2012. Botanical Journal of the Linnean Society, 171, 482–490.CrossRefGoogle Scholar
  57. Nevo, O., Garri, R. O., Salazar, L. T. H., Schulz, S., Heymann, E. W., Ayasse, M., et al. (2015). Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Scientific Reports, 5.Google Scholar
  58. Olson, V. A., & Owens, I. P. F. (1998). Costly sexual signals: Are carotenoids rare, risky or required? Trends in Ecology and Evolution, 13, 510–514.CrossRefPubMedGoogle Scholar
  59. Osorio, D., Smith, A. C., Vorobyev, M., & Buchanan-Smith, H. M. (2004). Detection of fruit and the selection of primate visual pigments for color vision. American Naturalist, 164, 696–708.CrossRefGoogle Scholar
  60. Osorio, D., & Vorobyev, M. (2008). A review of the evolution of animal colour vision and visual communication signals. Vision Research, 48, 2042–2051.CrossRefPubMedGoogle Scholar
  61. Otte, D. (1974). Effects and functions in the evolution of signaling systems. Annual Review of Ecology and Systematics, 5, 385–417.CrossRefGoogle Scholar
  62. Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.CrossRefPubMedGoogle Scholar
  63. Paliyath, G., Murr, D. P., Handa, A. K., & Lurie, S. (2008). Postharvest biology and technology of fruits, vegetables and flowers. Singapore: Wiley.Google Scholar
  64. Peichl, L., Rakotondraparany, F., & Kappeler, P. M. (2001). Photoreceptor types and distributions in nocturnal and diurnal Malagasy primates. Investigations in Opthalmology and Visual Science, 42, 270.Google Scholar
  65. R Core Team. (2015). R: A language and environment for statistical computing, version ver. 3.2.1. Vienna: R Foundation for Statistical Computing.Google Scholar
  66. Regan, B. C., Julliot, C., Simmen, B., Vienot, F., & Charles-Dominique, P. (2001). Fruits, foliage, and the evolution of primate colour vision. Philosophical transactions of the Royal Society of London Series B, Biological Sciences, 356, 229–283.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Regan, B. C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P., & Mollon, J. D. (1998). Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Research, 38(21), 3321–3327.CrossRefPubMedGoogle Scholar
  68. Revell, L. J. (2012). Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.CrossRefGoogle Scholar
  69. Richards, S. A. (2005). Testing ecological theory using the information-theoretic approach: Examples and cautionary results. Ecology, 86, 2805–2814.CrossRefGoogle Scholar
  70. Rouquier, S., & Giorgi, D. (2007). Olfactory receptor gene repertoires in mammals. Mutation Research, 616, 95–102.CrossRefPubMedGoogle Scholar
  71. Sanchez, F., Korine, C., Steeghs, M., Laarhoven, L., Cristescu, S. M., Harren, F. J. M., et al. (2006). Ethanol and methanol as possible odor cues for egyptian fruit bats (Rousettus aegypticus). Journal of Chemical Ecology, 32, 1289–1300.CrossRefPubMedGoogle Scholar
  72. Schaefer, H., & Braun, J. (2009). Reliable cues and signals of fruit quality are contingent on the habitat in black elder (Sambucus nigra). Ecology, 90, 1564–1573.CrossRefPubMedGoogle Scholar
  73. Schaefer, H., Schaefer, V., & Vorobyev, M. (2007). Are fruit colors adapted to consumer vision and birds equally efficient in detecting colorful signals? The American Naturalist, 169, S159–S169.CrossRefPubMedGoogle Scholar
  74. Schatz, G. E. (2001). Generic tree flora of madagascar. St. Louis: Royal Botanic Gardens.Google Scholar
  75. Schupp, E. W. (1993). Quantity, quality and the effectiveness of seed dispersal by animals. In T. H. Fleming & A. Estrada (Eds.), Frugivory and seed dispersal: Ecological and evolutionary aspects (pp. 15–29). Netherlands: Springer.Google Scholar
  76. Siemers, B. M., Goerlitz, H. R., Robsomanitrandrasana, E., Piep, M., Ramanamanjato, J. B., Rakotodravony, D., et al. (2007). Sensory basis of food detection in wild Microcebus murinus. International Journal of Primatology, 28, 291–304.CrossRefGoogle Scholar
  77. Sumner, P., & Mollon, J. D. (2000). Chromaticity as a signal of ripeness in fruits taken by primates. The Journal of Experimental Biology, 203, 1987–2000.PubMedGoogle Scholar
  78. Tan, Y., & Li, W. H. (1999). Trichromatic vision in prosimians. Nature, 402, 36.CrossRefPubMedGoogle Scholar
  79. Tokuoka, T., & Tobe, H. (2006). Phylogenetic analyses of Malpighiales using plastid and nuclear DNA sequences, with particular reference to the embryology of Euphorbiaceae sens. str. Journal of Plant Research, 119, 599–616.CrossRefPubMedGoogle Scholar
  80. Valenta, K., Brown, K. A., Melin, A. D., Monckton, S. K., Styler, S. A., Jackson, D. A., & Chapman, C. A. (2015a). It’s not easy being blue: are there olfactory and visual trade-offs in plant signalling? PLoS One, 10, e0131725.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Valenta, K., Brown, K. A., Rafaliarison, R. R., Styler, S. A., Jackson, D., Lehman, S. M., et al. (2015b). Sensory integration during foraging: the importance of fruit hardness, colour, and odour to brown lemurs. Behavioral Ecology and Sociobiology, 69, 1855–1865.CrossRefGoogle Scholar
  82. Valenta, K., Burke, R. J., Styler, S. A., Jackson, D. A., Melin, A. D., & Lehman, S. M. (2013). Colour and odour drive fruit selection and seed dispersal by mouse lemurs. Scientific Reports, 3, 1–5.CrossRefGoogle Scholar
  83. Valenta, K., Edwards, M., Rafaliarison, R. R., Johnson, S. E., Holmes, S., Brown, K., et al. (2015c). Visual ecology of true lemurs suggests a cathemeral origin for the primate cone opsin polymorphism. Functional Ecology.Google Scholar
  84. Valido, A., Schaefer, H. M., & Jordano, P. (2011). Colour, design and reward: Phenotypic integration of fleshy fruit displays. Journal of Evolutionary Biology, 24, 751–760.CrossRefPubMedGoogle Scholar
  85. van Roosmalen, M. G. M. (1985). Habitat preferences, diet, feeding strategy and social organization of the black spider monkey (Ateles paniscus paniscus Linnaeus 1758) in Surinam. Acta Amazon, 15, 12–38.Google Scholar
  86. Wheelwright, N. T., & Janson, C. H. (1985). Colors of fruit displays of bird-dispersed plants in two tropical forests. American Naturalist, 126, 777–799.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kim Valenta
    • 1
  • Chelsea N. Miller
    • 2
  • Spencer K. Monckton
    • 3
  • Amanda D. Melin
    • 4
  • Shawn M. Lehman
    • 5
  • Sarah A. Styler
    • 6
  • Derek A. Jackson
    • 7
  • Colin A. Chapman
    • 1
  • Michael J. Lawes
    • 8
  1. 1.Department of AnthropologyMcGill UniversityMontrealCanada
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of Tennessee at KnoxvilleKnoxvilleUSA
  3. 3.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  4. 4.Department of AnthropologyUniversity of CalgaryCalgaryCanada
  5. 5.Department of AnthropologyUniversity of TorontoTorontoCanada
  6. 6.Department of ChemistryUniversity of AlbertaEdmontonCanada
  7. 7.Department of ChemistryYork UniversityTorontoCanada
  8. 8.Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinAustralia

Personalised recommendations