Evolutionary Biology

, Volume 43, Issue 2, pp 171–187 | Cite as

Cranial Shape and the Modularity of Hybridization in Dingoes and Dogs; Hybridization Does Not Spell the End for Native Morphology

  • William C. H. Parr
  • Laura A. B. Wilson
  • Stephen Wroe
  • Nicholas J. Colman
  • Mathew S. Crowther
  • Mike Letnic
Research Article

Abstract

Australia’s native wild dog, the dingo (Canis dingo), is threatened by hybridization with feral or domestic dogs. In this study we provide the first comprehensive three dimensional geometric morphometric evaluation of cranial shape for dingoes, dogs and their hybrids. We introduce a novel framework to assess whether modularity facilitates, or constrains, cranial shape change in hybridization. Our results show that hybrid and pure dingo morphology overlaps greatly, meaning that hybrids cannot be reliably distinguished from dingoes on the basis of cranial metrics. We find that dingo morphology is resistant, with observed hybrids exhibiting morphology closer to the dingo than to the parent group dog. We also find that that hybridization with dog breeds does not push the dingo cranial morphology towards the wolf phenotype. Disparity and integration analyses on the ten recovered modules provided empirical support for modularity facilitating shape change over short evolutionary time scales. However, our results show that this is may not be the case in hybridization events, which were not influenced by module integration or disparity levels. We conclude that although hybridization events may introduce breed dog DNA to the dingo population, the native cranial morphology, and therefore likely the feeding eco-niche, of the dingo population is resistant to change. Our results have implications for conservation and management of dingoes and, more broadly, for the influence of integration patterns over ecological time scales in relation to selection pressure.

Keywords

Functional modules Geometric morphometrics Cranial morphology Functional morphology Canis Dingo Hybridization 

Supplementary material

11692_2016_9371_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 32 kb)
11692_2016_9371_MOESM2_ESM.tif (1002 kb)
Supplementary material 2 (TIFF 1003 kb)
11692_2016_9371_MOESM3_ESM.tif (198 kb)
Supplementary material 3 (TIFF 199 kb)
11692_2016_9371_MOESM4_ESM.bmp (323 kb)
Supplementary material 4 (BMP 323 kb)
11692_2016_9371_MOESM5_ESM.gif (8.5 mb)
Supplementary material 5 (GIF 8731 kb)
11692_2016_9371_MOESM6_ESM.gif (9.4 mb)
Supplementary material 6 (GIF 9587 kb)

References

  1. Abdi, H. (2007). The RV coefficient and the congruence coefficient. In N. Salkind (Ed.), Encyclopedia of measurement and statistics. Thousand Oaks, CA: Sage.Google Scholar
  2. Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: geometric morphometrics in the 21st century Hystrix-Italian. Journal of Mammalogy, 24(1), 7–14. doi:10.4404/hystrix-24.1-6283.Google Scholar
  3. Arnstein, P., Cohen, D. H., & Meyer, K. F. (1964). Dingo blood improves famous cattle dog. Journal of the American Veterinary Medical Association, 145, 933–936.PubMedGoogle Scholar
  4. Beldade, P., Koops, K., & Brakefield, P. M. (2002). Developmental constraints versus flexibility in morphological evolution. Nature, 416(6883), 844–847. doi:10.1038/416844a.PubMedCrossRefGoogle Scholar
  5. Bellwood, P. (1997). Prehistory of the Indo-Malaysian archipelago. Honolulu: University of Hawaii Press.Google Scholar
  6. Bolker, J. A. (2000). Modularity in development and why it matters to evo-devo. American Zoologist, 40(5), 770–776. doi:10.1093/icb/40.5.770.Google Scholar
  7. Budd, G. E. (2006). On the origin and evolution of major morphological characters. Biological Reviews, 81(4), 609–628. doi:10.1111/j.1469-185X.2006.tb00220.x.PubMedCrossRefGoogle Scholar
  8. Burt, C. (1948). Factor analysis and canonical correlations. British Journal of Psychology, 1, 95–106.Google Scholar
  9. Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36(3), 499–516. doi:10.2307/2408096.CrossRefGoogle Scholar
  10. Cheverud, J. M. (1995). Morphological integration in the Saddle-Back Tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145(1), 63–89. doi:10.2307/2463147.CrossRefGoogle Scholar
  11. Clark, N. R. (2003). A Dog Called Blue: The Australian Cattle Dog and the Australian Stumpy Tail Cattle Dog 1840–2000. Sydney: Wrightlight Pty Ltd.Google Scholar
  12. Colman, N., Gordon, C., Crowther, M. S., & Letnic, M. (2014). Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages. Proceedings of the Royal Society of London. Series B: Biological Sciences,. doi:10.1098/rspb.2013.3094.PubMedPubMedCentralGoogle Scholar
  13. Crowther, M. S., Fillios, M., Colman, N., & Letnic, M. (2014). An updated description of the Australian Dingo (Canis dingo Meyer, 1793). Journal of Zoology (London), 293(3), 192–203.CrossRefGoogle Scholar
  14. Drake, A. G., & Klingenberg, C. P. (2008). The pace of morphological change: Historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society B-Biological Sciences, 275(1630), 71–76. doi:10.1098/rspb.2007.1169.PubMedCentralCrossRefGoogle Scholar
  15. Drake, A. G., & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: Disparity and modularity. American Naturalist, 175(3), 289–301. doi:10.1086/650372.PubMedCrossRefGoogle Scholar
  16. Elledge, A. E., Allen, L. R., Carlsson, B. L., Wilton, A. N., & Leung, L. K. P. (2008). An evaluation of genetic analyses, skull morphology and visual appearance for assessing dingo purity: implications for dingo conservation. Wildlife Research, 35(8), 812–820. doi:10.1071/wr07056.CrossRefGoogle Scholar
  17. Esteve-Altava, B., Marugán-Lobón, J., Botella, H., Bastir, M., & Rasskin-Gutman, D. (2013). Grist for riedl’s mill: A network model perspective on the integration and modularity of the human skull. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 320, 489–500.CrossRefGoogle Scholar
  18. Frankino, W. A., Zwaan, B. J., Stern, D. L., & Brakefield, P. M. (2005). Natural selection and developmental constraints in the evolution of allometries. Science, 307, 718–720.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Freedman, A. H., Gronau, I., Schweizer, R. M., Ortega-Del Vecchyo, D., Han, E., Silva, P. M., et al. (2014). Genome sequencing highlights the dynamic early history of dogs. PLoS Genetics, 10(1), e1004016. doi:10.1371/journal.pgen.1004016.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gollan, K. (1984). The Australian dingo: in the shadow of man. In M. Archer & G. Clayton (Eds.), Vertebrate zoogeography and evolution in Australasia (pp. 921–927). Perth: Hesperian.Google Scholar
  21. Goswami, A. (2006). Cranial modularity shifts during mammalian evolution. American Naturalist, 168(2), 270–280. doi:10.1086/505758.PubMedCrossRefGoogle Scholar
  22. Goswami, A. (2007). Phylogeny, diet, and cranial integration in Australodelphian marsupials. Plos One, 2(10), e995. doi:10.1371/journal.pone.0000995.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Goswami, A., Milne, N., & Wroe, S. (2011). Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals. Proceedings of the Royal Society B-Biological Sciences, 278(1713), 1831–1839. doi:10.1098/rspb.2010.2031.PubMedCentralCrossRefGoogle Scholar
  24. Goswami, A., & Polly, P. D. (2010). The influence of modularity on cranial morphological disparity in Carnivora and Primates (Mammalia). PLoS ONE, 5(3), e9517. doi:10.1371/journal.pone.0009517.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hallgrímsson, B., Jamniczky, H., Young, N., Rolian, C., Parsons, T., Boughner, J., et al. (2009). Deciphering the Palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36(4), 355–376. doi:10.1007/s11692-009-9076-5.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Harcourt-Smith, W. E. H., Tallman, M., Frost, S. R., Wiley, D. F., Rohlf, F. J., & Delson, E. (2008). Analysis of selected hominoid joint surfaces using laser scanning and geometric morphometrics: A preliminary report. In E. J. Sargis & M. Dagosto (Eds.), Mammalian evolutionary morphology. A tribute to Frederick S. Szalay (pp. 373–383). New York: Springer.CrossRefGoogle Scholar
  27. Hendrikse, J. L., Parsons, T. E., & Hallgrímsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9(4), 393–401. doi:10.1111/j.1525-142X.2007.00176.x.CrossRefGoogle Scholar
  28. Jackson, D. A. (1993). Stopping rules in principal components analysis: A comparison of heuristic and statistical approaches. Ecology, 74(8), 2204–2214. doi:10.2307/1939574.CrossRefGoogle Scholar
  29. Jamniczky, H. A., & Hallgrímsson, B. (2009). A comparison of covariance structure in wild and laboratory muroid crania. Evolution, 63(6), 1540–1556. doi:10.1111/j.1558-5646.2009.00651.x.PubMedCrossRefGoogle Scholar
  30. Jones, E. (1990). Physical characteristics and taxonomic status of wild canids, Canis familiaris, from the Eastern Highlands of Victoria. Wildlife Research, 17(1), 69–81. doi:10.1071/WR9900069.CrossRefGoogle Scholar
  31. Jones, E. (2009). Hybridization between the dingo, Canis lupus dingo, and the domestic dog, Canis lupus familiaris, in Victoria: a critical review. Australian Mammalogy, 31(1), 1–7. doi:10.1071/AM08102.CrossRefGoogle Scholar
  32. Kidd, A. G., Bowman, J., Lesbarrères, D., & Schulte-Hostedde, A. I. (2009). Hybridization between escaped domestic and wild American mink (Neovison vison). Molecular Ecology, 18(6), 1175–1186. doi:10.1111/j.1365-294X.2009.04100.x.PubMedCrossRefGoogle Scholar
  33. Kirschner, M., & Gerhart, J. (1998). Evolvability. Proceedings of the National Academy of Sciences, 95(15), 8420–8427.CrossRefGoogle Scholar
  34. Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology Evolution and Systematics, 39(1), 115–132. doi:10.1146/annurev.ecolsys.37.091305.110054.CrossRefGoogle Scholar
  35. Klingenberg, C. P. (2010). Evolution and development of shape: Integrating quantitative approaches. Nature Reviews Genetics, 11(9), 623–635.PubMedGoogle Scholar
  36. Klingenberg, C. P. (2013). Cranial integration and modularity: Insights into evolution and development from morphometric data. [allometry; comparative methods; geometric morphometrics; modularity; morphological integration]. Hystrix-Italian. Journal of Mammalogy, 24(1), 43–58.Google Scholar
  37. Koler-Matznick, J., Brisbin, I. L., Feinstein, M., & Bulmer, S. (2003). An updated description of the New Guinea singing dog (Canis hallstromi, Troughton 1957). Journal of Zoology, 261, 109–118.CrossRefGoogle Scholar
  38. Leary, R. F., & Allendorf, F. W. (1989). Fluctuating asymmetry as an indicator of stress: Implications for conservation biology. Trends in Ecology & Evolution, 4(7), 214–217. doi:10.1016/0169-5347(89)90077-3.CrossRefGoogle Scholar
  39. Letnic, M., Koch, F., Gordon, C., Crowther, M. S., & Dickman, C. R. (2009). Keystone effects of an alien top-predator stem extinctions of native mammals. Proceedings of the Royal Society of London. Series B: Biological Sciences, 276(1671), 3249–3256. doi:10.1098/rspb.2009.0574.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Marroig, G., Shirai, L. T., Porto, A., Oliveira, F. B., & Conto, V. (2009). The evolution of modularity in the mammalian skull II: Evolutionary consequences. Evolutionary Biology, 36(1), 136–148. doi:10.1007/s11692-009-9051-1.CrossRefGoogle Scholar
  41. Marsden, C. D., Ortega-Del Vecchyo, D., O’Brien, D. P., Taylor, J. F., Ramirez, O., Vila, C., et al. (2016). Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proceedings of the National Academy of Science (PNAS), 113(1), 152–157.CrossRefGoogle Scholar
  42. Monteiro, L. R., & Nogueira, M. R. (2010). Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures. Evolution, 64(3), 724–744. doi:10.1111/j.1558-5646.2009.00857.x.PubMedCrossRefGoogle Scholar
  43. Morey, D. F. (1992). Size, shape and development in the evolution of the domestic dog. Journal of Archaeological Science, 19(2), 181–204. doi:10.1016/0305-4403(92)90049-9.CrossRefGoogle Scholar
  44. Muñoz-Fuentes, V., Darimont, C., Paquet, P., & Leonard, J. (2010). The genetic legacy of extirpation and re-colonization in Vancouver Island wolves. Conservation Genetics, 11(2), 547–556. doi:10.1007/s10592-009-9974-1.CrossRefGoogle Scholar
  45. Newsome, A. E., & Corbett, L. K. (1982). The identity of the dingo II.* Hybridization with domestic dogs in captivity and in the wild. Australian Journal of Zoology, 30(2), 365–374. doi:10.1071/ZO9820365.CrossRefGoogle Scholar
  46. Newsome, A. E., & Corbett, L. K. (1985). The identity of the dingo III.* The incidence of dingoes, dogs and hybrids and their coat colours in remote and settled regions of Australia. Australian Journal of Zoology, 33(3), 363–375. doi:10.1071/ZO9850363.CrossRefGoogle Scholar
  47. Newsome, A. E., Corbett, L. K., & Carpenter, S. M. (1980). The identity of the dingo I.* Morphological discriminants of dingo and dog skulls. Australian Journal of Zoology, 28(4), 615–625. doi:10.1071/ZO9800615.CrossRefGoogle Scholar
  48. Newsome, T. M., Stephens, D., Ballard, G.-A., Dickman, C. R., & Fleming, P. J. S. (2013). Genetic profile of dingoes (Canis lupus dingo) and free-roaming domestic dogs (C. l. familiaris) in the Tanami Desert, Australia. Wildlife Research, 40(3), 196–206. doi:10.1071/WR12128.CrossRefGoogle Scholar
  49. Noden, D. M., & Trainor, P. A. (2005). Relations and interactions between cranial mesoderm and neural crest populations. Journal of Anatomy, 207(5), 575–601. doi:10.1111/j.1469-7580.2005.00473.x.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Nussbaumer, M. (1982). Über die Variabilität der dorso-basalen Schädelknickungen bei Haushunden. Zoologischer Anzeiger, 209, 1–32.Google Scholar
  51. Oliveira, R., Godinho, R., Randi, E., & Alves, P. C. (2008). Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula? Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 363(1505), 2953–2961. doi:10.1098/rstb.2008.0052.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Olson, E. C., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.Google Scholar
  53. Oskarsson, M. C. R., Klütsch, C. F. C., Boonyaprakob, U., Wilton, A., Tanabe, Y., & Savolainen, P. (2011). Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proceedings of the Royal Society of London Series B-Biological Sciences, 279, 967–974. doi:10.1098/rspb.2011.1395.CrossRefGoogle Scholar
  54. Parr, W. C. H., Chatterjee, H. J., & Soligo, C. (2011). Inter- and intra-specific scaling of articular surface areas in the hominoid talus. Journal of Anatomy, 218(4), 386–401. doi:10.1111/j.1469-7580.2011.01347.x.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Parr, W. C. H., Soligo, C., Smaers, J., Chatterjee, H. J., Ruto, A., Cornish, L., & Wroe, S. (2014). Three dimensional shape variation of talar surface morphology in hominoid primates. Journal of Anatomy, 225(1), 42–59.PubMedCrossRefGoogle Scholar
  56. Parr, W. C. H., Wroe, S., Chamoli, U., Richards, H. S., McCurry, M. R., Clausen, P. D., & McHenry, C. (2012). Toward integration of geometric morphometrics and computational biomechanics: New methods for 3D virtual reconstruction and quantitative analysis of Finite Element Models. Journal of Theoretical Biology, 301, 1–14.PubMedCrossRefGoogle Scholar
  57. Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2011). Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proceedings of the Royal Society B, 278, 1903–1912. doi:10.1098/rspb.2010.2113.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews Genetics, 9(1), 75–82. doi:10.1038/nrg2278.PubMedCrossRefGoogle Scholar
  59. Polly, P. D. (2014). Geometric morphometrics for mathematica. (11.0 ed.). Bloomington, Indiana: Department of Geological Sciences, Indiana University.Google Scholar
  60. Porto, A., Oliveira, F., Shirai, L., Conto, V., & Marroig, G. (2009). The evolution of modularity in the mammalian skull I: Morphological integration patterns and magnitudes. Evolutionary Biology, 36(1), 118–135. doi:10.1007/s11692-008-9038-3.CrossRefGoogle Scholar
  61. Radford, C. G., Letnic, M., Fillios, M., & Crowther, M. S. (2012). An assessment of the taxonomic status of wild canids in south-eastern New South Wales: Phenotypic variation in dingoes. Australian Journal of Zoology, 60(2), 73–80. doi:10.1071/ZO12006.CrossRefGoogle Scholar
  62. Raff, R. A. (1996). The shape of life: Genes, development, and the evolution of animal form. Chicago: University of Chicago Press.Google Scholar
  63. Rhymer, J. M., & Simberloff, D. (1996). Extinction by hybridization and introgression. Annual Review of Ecology and Systematics, 27, 83–109.CrossRefGoogle Scholar
  64. Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39(1), 40–59. doi:10.2307/2992207.Google Scholar
  65. Sanger, T. J., Mahler, D. L., Abzhanov, A., & Losos, J. B. (2012). Roles for modularity and constraint in the evolution of cranial diversity among Anolis lizards. Evolution, 66(5), 1525–1542. doi:10.1111/j.1558-5646.2011.01519.x.PubMedCrossRefGoogle Scholar
  66. Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, E., & Lundeberg, J. (2004). A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 101(33), 12387–12390.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Shirai, L. T., & Marroig, G. (2010). Skull modularity in neotropical marsupials and monkeys: Size variation and evolutionary constraint and flexibility. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 314B(8), 663–683. doi:10.1002/jez.b.21367.CrossRefGoogle Scholar
  68. Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467–482. doi:10.2307/985254.Google Scholar
  69. Stephens, D. (2011). The molecular ecology of Australian wild dogs: hybridization, gene flow and genetic structure at multiple geographic scales. Unpublished Ph.D. thesis, University of Western Australia, Perth.Google Scholar
  70. Urdy, S., Wilson, L. A. B., Haug, J. T., & Sánchez-Villagra, M. R. (2013). On the unique perspective of paleontology in the study of developmental evolution and biases. Biological Theory, 8(3), 293–311. doi:10.1007/s13752-013-0115-1.CrossRefGoogle Scholar
  71. Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution, 50(3), 967–976. doi:10.2307/2410639.CrossRefGoogle Scholar
  72. Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8(12), 921–931. doi:10.1038/nrg2267.PubMedCrossRefGoogle Scholar
  73. Wayne, R. K. (1986). Cranial morphology of domestic and wild canids: The influence of development on morphological change. Evolution, 40(2), 243–261. doi:10.2307/2408805.CrossRefGoogle Scholar
  74. Wilson, L. A. B. (2013a). Allometric disparity in rodent evolution. Ecology and Evolution, 3(4), 971–984. doi:10.1002/ece3.521.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Wilson, L. A. B. (2013b). Geographic variation in the greater Japanese shrew-mole, Urotrichus talpoides: Combining morphological and chromosomal patterns. Mammalian Biology, 78(4), 267–275. doi:10.1016/j.mambio.2012.09.003.Google Scholar
  76. Wilson, L. A. B. (2013c). The contribution of developmental palaeontology to extensions of evolutionary theory. Acta Zoologica, 94(3), 254–260. doi:10.1111/j.1463-6395.2011.00539.x.CrossRefGoogle Scholar
  77. Wilton, A. N., Steward, D. J., & Zafiris, K. (1999). Microsatellite variation in the Australian dingo. Journal of Heredity, 90(1), 108–111. doi:10.1093/jhered/90.1.108.PubMedCrossRefGoogle Scholar
  78. Young, N. M., & Hallgrímsson, B. (2005). Serial homology and the evolution of mammalian limb covariation structure. Evolution, 59(12), 2691–2704. doi:10.1111/j.0014-3820.2005.tb00980.x.PubMedCrossRefGoogle Scholar
  79. Young, N. M., Wagner, G. P., & Hallgrímsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences, 107(8), 3400–3405. doi:10.1073/pnas.0911856107.CrossRefGoogle Scholar
  80. Zelditch, M. L., Swiderski, D. L., & Sheets, D. H. (2004). Morphometrics for biologists: A primer. New York: Academic Press.Google Scholar
  81. Zelditch, M. L., Wood, A. R., Bonett, R. M., & Swiderski, D. L. (2008). Modularity of the rodent mandible: Integrating bones, muscles, and teeth. Evolution and Development, 10(6), 756–768.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • William C. H. Parr
    • 1
    • 6
  • Laura A. B. Wilson
    • 2
  • Stephen Wroe
    • 3
  • Nicholas J. Colman
    • 2
    • 4
  • Mathew S. Crowther
    • 5
  • Mike Letnic
    • 2
  1. 1.Surgical and Orthopaedic Research Laboratory (SORL), Level 1, Clinical Sciences Bld, Gate 6, Prince of Wales Clinical SchoolUniversity of New South Wales (UNSW)SydneyAustralia
  2. 2.School of Biological, Earth and Environmental SciencesUniversity of New South Wales (BEES)SydneyAustralia
  3. 3.Form, Evolution and Anatomy Research Laboratory, Zoology, School of Environmental and Rural SciencesUniversity of New EnglandArmidaleAustralia
  4. 4.Hawkesbury Institute for the EnvironmentUniversity of Western SydneyPenrithAustralia
  5. 5.School of Biological SciencesUniversity of SydneySydneyAustralia
  6. 6.Prince of Wales Clinical School, Faculty of MedicineUniversity of New South WalesSydneyAustralia

Personalised recommendations