Evolutionary Biology

, Volume 43, Issue 1, pp 119–130 | Cite as

The Phylogenetic Association Between Salt Tolerance and Heavy Metal Hyperaccumulation in Angiosperms

  • Camile MorayEmail author
  • Eric W. Goolsby
  • Lindell Bromham
Research Article


Salt tolerance and heavy metal hyperaccumulation are two rare plant abilities that are heavily studied for their potential to contribute to agricultural sustainability and phytoremediation in response to anthropogenic environmental change. Several observations suggest that it is worth investigating the link between the abilities to tolerate high levels of soil salinity or accumulate more of a particular heavy metal from the soil than most plants. Firstly, several angiosperm families are known to contain both salt tolerant plants (halophytes) and heavy metal hyperaccumulators. Secondly, some halophytes can also accumulate heavy metals. Thirdly, although salinity tolerance and heavy metal hyperaccumulation typically require many physiological or anatomical changes, both have apparently evolved many times in angiosperms and among closely related species. We test for a significant relationship between halophytes and hyperaccumulators in angiosperms using taxonomic and phylogenetic analyses. We test whether there are more angiosperm families with both halophytes and hyperaccumulators than expected by chance, and whether there are more species identified as both halophyte and hyperaccumulator than if the abilities were unconnected. We also test whether halophytes and hyperaccumulators are phylogenetically clustered among species in seven angiosperm families. We find a significant association between halophytes and hyperaccumulators among angiosperm families and that there are significantly more species identified as both halophytes and hyperaccumulators than expected. Halophytes and hyperaccumulators each show low phylogenetic clustering, suggesting these abilities can vary among closely related species. In Asteraceae, Amaranthaceae, Fabaceae, and Poaceae, halophytes and hyperaccumulators are more closely related than if the two traits evolved independently.


Halophyte Evolution Comparative analysis Phylogeny 



We would like to thank Marcel Cardillo, Xia Hua, and Haris Saslis-Lagoudakis for providing helpful advice and feedback on the methods used in this analysis.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest associated with this research.

Supplementary material

11692_2015_9355_MOESM1_ESM.pdf (4.5 mb)
Supplementary material 1 (PDF 4614 kb)
11692_2015_9355_MOESM2_ESM.csv (3.1 mb)
Supplementary material 2 (CSV 3206 kb)


  1. Albert, R. (1975). Salt regulation in halophytes. Oecologia, 21, 57–71.CrossRefGoogle Scholar
  2. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91, 869–881.CrossRefPubMedGoogle Scholar
  3. Anacker, B. L. (2014). The nature of serpentine endemism. American Journal of Botany, 101, 219–224.CrossRefPubMedGoogle Scholar
  4. Anderson, C., Brooks, R. R., Chiarucci, A., LaCoste, C. J., Leblanc, M., Robinson, B. H., et al. (1999). Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration, 67, 407–415.CrossRefGoogle Scholar
  5. Anjum, N. A., Ahmad, I., Válega, M., Mohmood, I., Gill, S. S., Tuteja, N., et al. (2014). Salt marsh halophyte services to metal–metalloid remediation: Assessment of the processes and underlying mechanisms. Critical Reviews in Environmental Science and Technology, 44, 2038–2106.CrossRefGoogle Scholar
  6. Antonovics, J., Bradshaw, A. D., & Turner, R. G. (1971). Heavy metal tolerance in plants. Advances in Ecological Research, 7, 1–85.CrossRefGoogle Scholar
  7. APG III. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–121.CrossRefGoogle Scholar
  8. Arthur, E. L., Rice, P. J., Rice, P. J., Anderson, T. A., Baladi, S. M., Henderson, K. L. D., & Coats, J. R. (2005). Phytoremediation—An overview. Critical Reviews in Plant Science, 24, 109–122.CrossRefGoogle Scholar
  9. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyper-accumulate metallic elements—A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.Google Scholar
  10. Baker, A., McGrath, S. P., Sidoli, C., & Reeves, R. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 11, 41–49.CrossRefGoogle Scholar
  11. Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Science, 24, 23–58.CrossRefGoogle Scholar
  12. Bennett, T. H., Flowers, T. J., & Bromham, L. (2013). Repeated evolution of salt-tolerance in grasses. Biology Letters, 9, 20130029.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Bert, V., Meerts, P., Saumitou-Laprade, P., Salis, P., Gruber, W., & Verbruggen, N. (2003). Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil, 249, 9–18.CrossRefGoogle Scholar
  14. Bhatia, N. P., Baker, A. J. M., Walsh, K. B., & Midmore, D. J. (2005). A role for nickel in osmotic adjustment in drought-stressed plants of the nickel hyperaccumulator Stackhousia tryonii Bailey. Planta, 223, 134–139.CrossRefPubMedGoogle Scholar
  15. Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65, 1241–1257.CrossRefPubMedGoogle Scholar
  16. Boyd, R. S. (2004). Ecology of metal hyperaccumulation. New Phytologist, 162, 563–567.CrossRefGoogle Scholar
  17. Briat, J. F., & Lebrun, M. (1999). Plant responses to metal toxicity. Plant Biology and Pathology, 322, 43–54.Google Scholar
  18. Bromham, L., & Bennett, T. H. (2014). Salt tolerance evolves more frequently in C4 grass lineages. Journal of Evolutionary Biology, 27, 653–659.CrossRefPubMedGoogle Scholar
  19. Brooks, R. R., Chambers, M. F., Nicks, L. J., & Robinson, B. H. (1998). Phytomining. Trends in Plant Science, 3, 359–362.CrossRefGoogle Scholar
  20. Cappa, J. J., & Pilon-Smits, E. A. H. (2014). Evolutionary aspects of elemental hyperaccumulation. Planta, 239, 267–275.CrossRefPubMedGoogle Scholar
  21. Cayuela, L., Granzow-de la Cerda, Í., Albuquerque, F. S., & Golicher, D. J. (2012). Taxonstand: An R package for species names standardisation in vegetation databases. Methods in Ecology and Evolution, 3, 1078–1083.CrossRefGoogle Scholar
  22. Cecchi, L., Gabbrielli, R., Arnetoli, M., Gonnelli, C., Hasko, A., & Selvi, F. (2010). Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): Evidence from nrDNA sequence data. Annals of Botany, 106, 751–767.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Colmer, T. D., & Flowers, T. J. (2008). Flooding tolerance in halophytes. New Phytologist, 179, 964–974.CrossRefPubMedGoogle Scholar
  24. Colmer, T. D., Flowers, T. J., & Munns, R. (2006). Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany, 57, 1059–1078.CrossRefPubMedGoogle Scholar
  25. Dagar, J. C., & Gurbachan, S. (2007). Biodiversity of saline and waterlogged environments: Documentation, utilization and management. NBA scientific bulletin number-9, National Biodiversity Authority, Chennai, Tamil Nadu, India, p. 78.Google Scholar
  26. de Silva, N. D. G., Cholewa, E., & Ryser, P. (2012). Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). Journal of Experimental Botany, 63, 5957–5966.CrossRefPubMedGoogle Scholar
  27. Edwards, E. J., & Donoghue, M. J. (2013). Is it easy to move and easy to evolve? Evolutionary accessibility and adaptation. Journal of Experimental Botany, 64, 4047–4052.CrossRefPubMedGoogle Scholar
  28. El Shaer, H. M. (2010). Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Ruminant Research, 91, 3–12.CrossRefGoogle Scholar
  29. Felsenstein, J. (2005). Using the quantitative genetic threshold model for inferences between and within species. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360, 1427–1434.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Feuillet, C., Langridge, P., & Waugh, R. (2008). Cereal breeding takes a walk on the wild side. Trends in Genetics, 24, 24–32.CrossRefPubMedGoogle Scholar
  31. FitzJohn, R. G. (2012). Diversitree: Comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution, 3, 1084–1092.CrossRefGoogle Scholar
  32. Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 37, 604.CrossRefGoogle Scholar
  33. Flowers, T., Troke, P. F., & Yeo, A. R. (1977). The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology, 28, 89–121.CrossRefGoogle Scholar
  34. Flowers, T. J., & Yeo, A. R. (1995). Breeding for salinity resistance in crop plants: Where next? Australian Journal of Plant Physiology, 22, 875–884.CrossRefGoogle Scholar
  35. Fritz, S. A., & Purvis, A. (2010). Selectivity in mammalian extinction risk and threat types: A new measure of phylogenetic signal strength in binary traits. Conservation Biology, 24, 1042–1051.CrossRefPubMedGoogle Scholar
  36. Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Science, 18, 227–255.CrossRefGoogle Scholar
  37. Goolsby, E. W., & Mason, C. M. (2015). Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Frontiers in Plant Science, 6, 33.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Greenwood, M. E., & MacFarlane, G. R. (2009). Effects of salinity on competitive interactions between two Juncus species. Aquatic Botany, 90, 23–29.CrossRefGoogle Scholar
  39. Guvensen, A., Gork, G., & Özturk, M. (2006). An overview of the halophytes in Turkey. In M. A. Khan, G. S. Kust, H.-J. Barth, & B. Böer (Eds.), Sabkha ecosystems (Vol. II, pp. 9–30). Netherlands: Springer.CrossRefGoogle Scholar
  40. Hamed, K. B., Ellouzi, H., Talbi, O. Z., Hessini, K., Slama, I., Ghnaya, T., et al. (2013). Physiological response of halophytes to multiple stresses. Functional Plant Biology, 40, 883–896.Google Scholar
  41. Hanikenne, M., & Nouet, C. (2011). Metal hyperaccumulation and hypertolerance: A model for plant evolutionary genomics. Current Opinion in Plant Biology, 14, 252–259.CrossRefPubMedGoogle Scholar
  42. Haston, E., Richardson, J. E., Stevens, P. F., Chase, M. W., & Harris, D. J. (2009). The Linear Angiosperm Phylogeny Group (LAPG) III: A linear sequence of the families in APG III. Botanical Journal of the Linnean Society, 161, 128–131.CrossRefGoogle Scholar
  43. Hong, Y. (2013). Computational statistics and data analysis. Computational Statistics and Data Analysis, 59, 41–51.CrossRefGoogle Scholar
  44. Hughes, R., Bachmann, K., Smirnoff, N., & Macnair, M. R. (2001). The role of drought tolerance in serpentine tolerance in the Mimulus guttatus Fischer ex DC. complex. South African Journal of Science, 97, 581–586.Google Scholar
  45. Jordan, F., Robin Abbott, M., Maier, R. M., & Glenn, E. P. (2002). A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte. Environmental Toxicology and Chemistry, 21, 2698–2704.CrossRefPubMedGoogle Scholar
  46. Kadukova, J., Manousaki, E., & Kalogerakis, N. (2008). Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). International Journal of Phytoremediation, 10, 31–46.CrossRefPubMedGoogle Scholar
  47. Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463–1464.CrossRefPubMedGoogle Scholar
  48. Khan, M. A., & Qaiser, M. (2006). Halophytes of Pakistan: Characteristics, distribution and potential economic usages. In M. A. Khan, G. S. Kust, H.-J. Barth, & B. Böer (Eds.), Sabkha ecosystems (Vol. II, pp. 129–153). Netherlands: Springer.CrossRefGoogle Scholar
  49. Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517–534.CrossRefPubMedGoogle Scholar
  50. Lefèvre, I., Marchal, G., Meerts, P., Corréal, E., & Lutts, S. (2009). Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany, 65, 142–152.CrossRefGoogle Scholar
  51. Lutts, S., & Lefevre, I. (2015). How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Annals of Botany, 115, 509–528.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444, 139–158.CrossRefPubMedGoogle Scholar
  53. Manousaki, E., & Kalogerakis, N. (2011a). Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Industrial and Engineering Chemistry Research, 50, 656–660.CrossRefGoogle Scholar
  54. Manousaki, E., & Kalogerakis, N. (2011b). Halophytes—An emerging trend in phytoremediation. International Journal of Phytoremediation, 13, 959–969.CrossRefPubMedGoogle Scholar
  55. Menzel, U., & Lieth, H. (2003). Halophyte database version 2.0. In H. Lieth & M. Mochtchenko (Eds.), Cash crop halophytes: Recent studies (pp. 221–250). Dordrecht: Kluwer Academic Publishers.Google Scholar
  56. Moray, C., Hua, X., & Bromham, L. (2015). Salt tolerance is evolutionarily labile in a diverse set of angiosperm families. BMC Evolutionary Biology, 15, 90.PubMedCentralCrossRefPubMedGoogle Scholar
  57. Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645–663.CrossRefPubMedGoogle Scholar
  58. Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025–1043.CrossRefPubMedGoogle Scholar
  59. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.CrossRefPubMedGoogle Scholar
  60. Nriagu, J. O. (1979). Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature, 279, 409–411.CrossRefPubMedGoogle Scholar
  61. Öztürk, M., Guvensen, A., Sakçali, S., & Gork, G. (2008). Halophyte plant diversity in the Irano-Turanian phytogeographical region of Turkey. In C. Abdelly, M. Öztürk, M. Ashraf, & C. Grignon (Eds.), Biosaline agriculture and high salinity tolerance (pp. 141–155). Basel: Birkhäuser.CrossRefGoogle Scholar
  62. Panta, S., Flowers, T., Lane, P., Doyle, R., Haros, G., & Shabala, S. (2014). Halophyte agriculture: Success stories. Environmental and Experimental Botany, 107, 71–83.CrossRefGoogle Scholar
  63. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289.CrossRefPubMedGoogle Scholar
  64. Proctor, J. (1999). Toxins, nutrient shortages and droughts: The serpentine challenge. Trends in Ecology and Evolution, 14, 334–335.CrossRefGoogle Scholar
  65. Przymusiński, R., Rucińska, R., & Gwóźdź, E. A. (2004). Increased accumulation of pathogenesis-related proteins in response of lupine roots to various abiotic stresses. Environmental and Experimental Botany, 52, 53–61.CrossRefGoogle Scholar
  66. Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M. H., Koyro, H.-W., Ranieri, A., et al. (2010). Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology, 101, 6822–6828.CrossRefPubMedGoogle Scholar
  67. Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.CrossRefPubMedGoogle Scholar
  68. Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39, 2661–2664.CrossRefGoogle Scholar
  69. Redondo-Gómez, S. (2013). Bioaccumulation of heavy metals in Spartina. Functional Plant Biology, 40, 913–921.Google Scholar
  70. Redondo-Gómez, S., Mateos-Naranjo, E., & Andrades-Moreno, L. (2010). Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. Journal of Hazardous Materials, 184, 299–307.CrossRefPubMedGoogle Scholar
  71. Reeves, R. D., Schwartz, C., Morel, J. L., & Edmondson, J. (2001). Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. International Journal of Phytoremediation, 3, 145–172.CrossRefGoogle Scholar
  72. Rozema, J., Cornelisse, D., Zhang, Y., Li, H., Bruning, B., Katschnig, D., et al. (2014). Comparing salt tolerance of beet cultivars and their halophytic ancestor: Consequences of domestication and breeding programs. AoB plants: plu083.Google Scholar
  73. Rozema, J., & Flowers, T. (2008). Crops for a salinized world. Science, 322, 1478–1480.CrossRefPubMedGoogle Scholar
  74. Sage, R. F. (2004). The evolution of C4 photosynthesis. New Phytologist, 161, 341–370.CrossRefGoogle Scholar
  75. Saslis-Lagoudakis, C. H., Moray, C., & Bromham, L. (2014). Evolution of salt tolerance in angiosperms: A phylogenetic approach. In N. Rajakaruna, R. S. Boyd, & T. B. Harris (Eds.), Plant ecology and evolution in harsh environments (pp. 77–95). Hauppauge: Nova Science Publishers.Google Scholar
  76. Schat, H., Sharma, S. S., & Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum, 101, 477–482.CrossRefGoogle Scholar
  77. Sharma, S. S., & Dietz, K.-J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57, 711–726.CrossRefPubMedGoogle Scholar
  78. Sheoran, V., Sheoran, A. S., & Poonia, P. (2009). Phytomining: A review. Minerals Engineering, 22, 1007–1019.CrossRefGoogle Scholar
  79. Smith, S. A., Beaulieu, J. M., Stamatakis, A., & Donoghue, M. J. (2011). Understanding angiosperm diversification using small and large phylogenetic trees. American Journal of Botany, 98, 404–414.CrossRefPubMedGoogle Scholar
  80. Stevens, P. F. (2001). Angiosperm phylogeny website. 12th edition.
  81. Stewart, G. R., & Lee, J. A. (1974). The role of proline accumulation in halophytes. Planta, 120, 279–289.CrossRefPubMedGoogle Scholar
  82. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327, 818.CrossRefPubMedGoogle Scholar
  83. The Plant List. (2010). The plant list. Version 2.
  84. Thomas, J. C., Malick, F. K., Endreszl, C., Davies, E. C., & Murray, K. S. (1998). Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiologia Plantarum, 102, 360–368.CrossRefGoogle Scholar
  85. Vara Prasad, M. N., & de Oliveira Freitas, H. M. (2003). Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 285–321.Google Scholar
  86. Ventura, Y., Eshel, A., Pasternak, D., & Sagi, M. (2015). The development of halophyte-based agriculture: Past and present. Annals of Botany, 115, 529–540.PubMedCentralCrossRefPubMedGoogle Scholar
  87. Ventura, Y., & Sagi, M. (2013). Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92, 144–153.CrossRefGoogle Scholar
  88. Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475–505.CrossRefGoogle Scholar
  89. Weber, D. J., Ansari, R., Gul, B., & Ajmal Khan, M. (2007). Potential of halophytes as source of edible oil. Journal of Arid Environments, 68, 315–321.CrossRefGoogle Scholar
  90. Wu, L., Bradshaw, A. D., & Thurman, D. A. (1975). The potential for evolution of heavy metal tolerance in plants. III. The rapid evolution of copper tolerance in Agrostis stolonifera. Heredity, 34, 165–187.CrossRefGoogle Scholar
  91. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 1–20.CrossRefGoogle Scholar
  92. Zhao, K., Song, J., Feng, G., Zhao, M., & Liu, J. (2011). Species, types, distribution, and economic potential of halophytes in China. Plant and Soil, 342, 495–509.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Camile Moray
    • 1
    Email author
  • Eric W. Goolsby
    • 2
  • Lindell Bromham
    • 1
  1. 1.Macroevolution and Macroecology Group, Division of Evolution, Ecology and Genetics, Research School of BiologyAustralian National UniversityCanberraAustralia
  2. 2.Odum School of Ecology Interdisciplinary Toxicology ProgramUniversity of GeorgiaAthensUSA

Personalised recommendations