Correlations Between the Morphology of Sonic Hedgehog Expression Domains and Embryonic Craniofacial Shape

Abstract

Quantitative analysis of gene expression domains and investigation of relationships between gene expression and developmental and phenotypic outcomes are central to advancing our understanding of the genotype–phenotype map. Gene expression domains typically have smooth but irregular shapes lacking homologous landmarks, making it difficult to analyze shape variation with the tools of landmark-based geometric morphometrics. In addition, 3D image acquisition and processing introduce many artifacts that further exacerbate the problem. To overcome these difficulties, this paper presents a method that combines optical projection tomography scanning, a shape regularization technique and a landmark-free approach to quantify variation in the morphology of Sonic hedgehog expression domains in the frontonasal ectodermal zone (FEZ) of avians and investigate relationships with embryonic craniofacial shape. The model reveals axes in FEZ and embryonic-head morphospaces along which variation exhibits a sharp linear relationship at high statistical significance. The technique should be applicable to analyses of other 3D biological structures that can be modeled as smooth surfaces and have ill-defined shape.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bookstein, F. L. (1996). Morphometric tools for landmark data: Geometry and biology. Cambridge, MA: Cambridge University.

    Google Scholar 

  2. Chong, H., Young, N., et al. (2012). Signaling by SHH rescues facial defects following blockade in the brain. Developmental Dynamics, 241, 247–256.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  3. Dryden, I., & Mardia, K. (1998). Statistical shape analysis. Cambridge, MA: Cambridge University.

    Google Scholar 

  4. Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Constructive Theory of Functions of Several Variables, 571, 85–100.

    Article  Google Scholar 

  5. Fisher, M. E., Clelland, A. K., et al. (2008). Integrating technologies for comparing 3D gene expression domains in the developing chick limb. Development Biology, 317, 13–23.

    Article  CAS  Google Scholar 

  6. Fortune, S. (1987). A sweepline algorithm for Voronoi diagrams. In SCG ‘86 Proceedings of the second annual symposium on computational geometry (pp. 313–322). New York, NY: ACM.

    Google Scholar 

  7. Fowlkes, C., Hendriks, C., et al. (2008). A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. Cell, 133, 364–374.

    Article  CAS  PubMed  Google Scholar 

  8. Guibas, L., Stolfi, J. (1985). Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. In ACM transactions on graphics (TOG), 74–123.

  9. Hallgrimsson, B., & Hall, B. K. (2011). Epigenetics: Linking genotype and phenotype in development and evolution. Oakland, CA: University of California Press.

    Google Scholar 

  10. Hallgrimsson, B., Jamniczky, H., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36, 355–376.

    PubMed Central  Article  PubMed  Google Scholar 

  11. Hendrikse, J. L., Parsons, T. E., & Hallgrimsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution and Development, 9, 393–401.

    Article  PubMed  Google Scholar 

  12. Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28, 321–377.

    Article  Google Scholar 

  13. Houle, D., Govindaraju, D. R., & Omholt, S. (2010). Phenomics: The next challenge. Nature Reviews Genetics, 11, 855–866.

    Article  CAS  PubMed  Google Scholar 

  14. Hu, D., & Marcucio, R. S. (2009). A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development, 136, 107–116.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  15. Hu, D., Marcucio, R. S., & Helms, J. A. (2003). A zone of frontonasal ectoderm regulates patterning and growth in the face. Development, 130, 1749–1758.

    Article  CAS  PubMed  Google Scholar 

  16. Hu, D., Young, N., et al. (2015). Signals from the brain induce variation in avian facial shape. Developmental Dynamics (in press).

  17. Kendall, D. L. (1984). Shape manifolds, procrustean metrics and complex projective spaces. Bulletin of the London Mathematical Society, 16, 81–121.

    Article  Google Scholar 

  18. Kendall, D. G., Barden, D., Carne, T. K., & Le, H. (1999). Shape and shape theory. Chichester, NY: Wiley.

    Book  Google Scholar 

  19. Krzanowski, W. J. (1988). Principles of multivariate analysis: A user’s perspective. New York, NY: Oxford University.

    Google Scholar 

  20. Kudoh, T., Tsang, M., et al. (2001). Gene expression screen in zebrafish embryogenesis. Genome Research, 11, 1979–1987.

    Article  CAS  PubMed  Google Scholar 

  21. Le, H., & Kendall, D. L. (1993). The Riemannian structure of Euclidean shape spaces: A novel environment for statistics. Annals of Statistics, 21, 1225–1271.

    Article  Google Scholar 

  22. Lein, E. S., Hawrylycz, M. J., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445, 168–176.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, X., Mio, W., et al. (2008). Models of normal variation and local contrasts in hippocampal anatomy. In Medical Image Computing and Computer-Assisted InterventionMICCAI 2008, New York, NY: Springer.

  24. Marcucio, R. S., Cordero, D., & Helms, J. A. (2005). Molecular interactions coordinating development of the forebrain and face. Development Biology, 284, 48–61.

    Article  CAS  Google Scholar 

  25. Marcucio, R. S., Young, N. M., Hu, D., & Hallgrimsson, B. (2011). Mechanisms that underlie co-variation of the brain and face. Genesis, 49, 177–189.

    PubMed Central  Article  PubMed  Google Scholar 

  26. Meinguet, J. (1979). Multivariate interpolation at arbitrary points made simple. Applied Mathematics Physics, 30, 292–304.

    Article  Google Scholar 

  27. Mio, W., Bowers, J. C., Hurdal, M. K., & Liu, X. (2007). Modeling brain anatomy with 3D arrangements of curves. In ICCV 2007, 11th IEEE International Conference on Computer Vision 2007 (pp. 1–8). doi:10.1109/ICCV.2007.4409164.

  28. Myasnikova, E., Samsonova, A., et al. (2001). Registration of the expression patterns of Drosophila segmentation genes by two independent methods. Bioinformatics, 17, 3–12.

    Article  CAS  PubMed  Google Scholar 

  29. Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33, 1065–1076.

    Article  Google Scholar 

  30. Quintana, L., & Sharpe, J. (2011). Optical projection tomography of vertebrate embryo development. Cold Spring Harbor Protocols,. doi:10.1101/pdb.top116.

    Google Scholar 

  31. Rosenbaltt, M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27, 832–837.

    Article  Google Scholar 

  32. Seber, G. (1984). Multivariate observations. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  33. Sharpe, J. (2002). Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science, 296, 541–545.

    Article  CAS  PubMed  Google Scholar 

  34. Silverman, B. W. (1998). Density estimation for statistics and data analysis. London: Chapman Hall/CRC.

    Google Scholar 

  35. Tassy, O., Dauga, D., et al. (2010). The ANISEED database: Digital representation, formalization, and elucidation of a chordate developmental program. Genome Research, 20, 1459–1468.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  36. Visel, A., Thaller, C., & Eichele, G. (2004). GenePaint.org: An atlas of gene expression patterns in the mouse embryo. Nucleic Acids Research, 32, 552–556.

    Article  Google Scholar 

  37. Wagner, P., Ruta, M., & Coates, M. (2006). Evolutionary patterns in early tetrapods. II. Differing constraints on available character space among clades. Proceedings of the Royal Society B: Biological Sciences, 273, 2107–2111.

    PubMed Central  Article  PubMed  Google Scholar 

  38. Wahba, G. (1990). Spline models for observational data. Philadelphia, PA: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  39. Wong, F., Welten, M., et al. (2013). eChickAtlas: An introduction to the database. Genesis, 51, 365–371.

    Article  CAS  PubMed  Google Scholar 

  40. Young, N. M., Chong, H. J., et al. (2010). Quantitative analyses link modulation of sonic hedgehog signaling to continuous variation in facial growth and shape. Development, 137, 3405–3409.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the National Science Foundation Grant DBI-1052942 (WM) and National Institutes of Health Grants 3R01DE021708 (BH, RSM and WM) and F32DE02214 (RMG). We thank the anonymous reviewers for their comments.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All experiments comply with the current laws of the United States of America and Canada.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Washington Mio.

Additional information

Software Accessibility Matlab code for the shape regularization method developed in this paper is available for free use at https://github.com/qx0731/Mesh-Regularization-/.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Jamniczky, H., Hu, D. et al. Correlations Between the Morphology of Sonic Hedgehog Expression Domains and Embryonic Craniofacial Shape. Evol Biol 42, 379–386 (2015). https://doi.org/10.1007/s11692-015-9321-z

Download citation

Keywords

  • Gene expression domains
  • Facial shape
  • Sonic hedgehog
  • Frontonasal ectodermal zone (FEZ)
  • Genotype–phenotype map