Evolutionary Biology

, Volume 42, Issue 2, pp 223–234 | Cite as

Disentangling the Size and Shape Components of Sexual Dimorphism

Research Article

Abstract

Many organisms are sexually dimorphic, reflecting sex-specific selection pressures. But although sexual dimorphism may consist of different variables from size to shape and physiology, most research emphasizes a single aspect of sexual dimorphism, notably size, without specifying its components and their relationship. Among terrestrial animals, spiders exhibit most extreme sex-specific differences in size and abdominal shape, and therefore represent ideal models to address this question. Here, we dissect sexual dimorphism in spiders at two phylogenetic hierarchical levels. At the species level, we employ comparative phylogenetic tests to explore the association between sexual shape dimorphism (SShD) and sexual size dimorphism (SSD) in the orbweb clade Argiopinae. At the genus level, we then explore such patterns on a phylogeny of orb weavers (Araneoidea). Female argiopines had more diverse abdominal morphotypes than the males and the abdominal shape evolution was only poorly correlated between the sexes. Phylogenetic and comparative data suggested that evolution of SShD in argiopines was related to geographic history, but that sexually shape monomorphic cases arose through selection for male size, perhaps acting against fecundity selection. While in argiopines there was no clear association between SShD and SSD, we detected a significant correlation in all orb weavers at the genus level. The shape and the size components of sexual dimorphism may thus respond independently to selection pressures, but at certain phylogenetic levels SSD may be a prerequisite for SShD. Research on other animal groups is needed to establish whether the here detected patterns on spiders are general.

Keywords

Sexual shape dimorphism Sexual size dimorphism Abdominal shape Sexual selection Intraspecific niche divergence Spiders 

Supplementary material

11692_2015_9313_MOESM1_ESM.txt (182 kb)
Supplementary material 1 (TXT 181 kb)
11692_2015_9313_MOESM2_ESM.xlsx (20 kb)
The size measurement, body shape, SSD and SShD of argiopine spiders. See separate file Tables_S1.xlsx
11692_2015_9313_MOESM3_ESM.xlsx (20 kb)
SSD and SShD scores for araneoid spiders with references. See separate file Tables_S2.xlsx

References

  1. Albertson, A. E., Teulé, F., Weber, W., Yarger, J. L., & Lewis, R. V. (2014). Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers. Journal of the Mechanical Behavior of Biomedical Materials, 29, 225–234. doi:10.1016/j.jmbbm.2013.09.002.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Andersson, M. B. (1994). Sexual selection. Princeton: Princeton University Press.Google Scholar
  3. Badyaev, A. V., & Martin, T. E. (2000). Sexual dimorphism in relation to current selection in the house finch. Evolution, 54(3), 987–997.CrossRefPubMedGoogle Scholar
  4. Benítez, H. A., Avaria-Llautureo, J., Canales-Aguirre, C. B., Jerez, V., Parra, L. E., & Hernández, C. E. (2013). Evolution of sexual size dimorphism and its relationship with sex ratio in carabid beetles of Genus Ceroglossus Solier. Current Zoology, 59(6), 769–777.Google Scholar
  5. Bjørn, P. D. P. (1997). A taxonomic revision of the African part of the orb-weaving genus Argiope (Araneae: Araneidae). Entomologica Scandinavica, 28(2), 199–239.CrossRefGoogle Scholar
  6. Blamires, S. J., Wu, C. L., Blackledge, T. A., & Tso, I. M. (2012). Post-secretion processing influences spider silk performance. Journal of the Royal Society, Interface, 9(75), 2479–2487. doi:10.1098/rsif.2012.0277.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Blanckenhorn, W. U. (2000). The evolution of body size: What keeps organisms small? Quarterly Review of Biology, 75(4), 385–407.CrossRefPubMedGoogle Scholar
  8. Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57(4), 717–745.CrossRefPubMedGoogle Scholar
  9. Bond, J. E., Garrison, N. L., Hamilton, C. A., Godwin, R. L., Hedin, M., & Agnarsson, I. (2014). Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Current Biology, 24(15), 1765–1771. doi:10.1016/j.cub.2014.06.034.CrossRefPubMedGoogle Scholar
  10. Bonduriansky, R. (2006). Convergent evolution of sexual shape dimorphism in diptera. Journal of Morphology, 267(5), 602–611.CrossRefPubMedGoogle Scholar
  11. Bonnet, X., Delmas, V., El-Mouden, H., Slimani, T., Sterijovski, B., & Kuchling, G. (2010). Is sexual body shape dimorphism consistent in aquatic and terrestrial chelonians? Zoology, 113(4), 213–220. doi:10.1016/j.zool.2010.03.001.CrossRefPubMedGoogle Scholar
  12. Bonnet, X., Lagarde, F., Henen, B. T., Corbin, J., Nagy, K. A., Naulleau, G., et al. (2001). Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biological Journal of the Linnean Society, 72(3), 357–372. doi:10.1111/j.1095-8312.2001.tb01323.x.CrossRefGoogle Scholar
  13. Brooks, M. J. (1991). The ontogeny of sexual dimorphism: Quantitative models and a case study in labrisomid blennies (Teleostei: Paraclinus). Systematic Biology, 40(3), 271–283.CrossRefGoogle Scholar
  14. Bruce, M. J., Heiling, A. M., & Herberstein, M. E. (2005). Spider signals: Are web decorations visible to birds and bees? Biology Letters, 1(3), 299–302.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Butler, M. A., & Losos, J. B. (2002). Multivariate sexual dimorphism, sexual selection, and adaptation in Greater Antillean Anolis lizards. Ecological Monographs, 72(4), 541–559.CrossRefGoogle Scholar
  16. Cheng, R. C., & Kuntner, M. (2014). Phylogeny suggests nondirectional and isometric evolution of sexual size dimorphism in argiopine spiders. Evolution, 68(10), 2861–2872. doi:10.1111/evo.12504.CrossRefPubMedGoogle Scholar
  17. Cheng, R. C., & Tso, I. M. (2007). Signaling by decorating webs: Luring prey or deterring predators? Behavioral Ecology, 18(6), 1085–1091. doi:10.1093/beheco/arm081.CrossRefGoogle Scholar
  18. Cheng, R. C., Yang, E. C., Lin, C. P., Herberstein, M. E., & Tso, I. M. (2010). Insect form vision as one potential shaping force of spider web decoration design. Journal of Experimental Biology, 213(5), 759–768. doi:10.1242/jeb.037291.CrossRefPubMedGoogle Scholar
  19. Coddington, J. A., Hormiga, G., & Scharff, N. (1997). Giant female or dwarf male spiders? Nature, 385, 687–688.CrossRefGoogle Scholar
  20. Cox, R. M., Skelly, S. L., & John-Alder, H. B. (2003). A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution, 57(7), 1653–1669.CrossRefPubMedGoogle Scholar
  21. Cubo, J., Ponton, F., Laurin, M., De Margerie, E., & Castanet, J. (2005). Phylogenetic signal in bone microstructure of sauropsids. Systematic Biology, 54(4), 562–574.CrossRefPubMedGoogle Scholar
  22. Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M. A., Álvarez-Padilla, F., & Hormiga, G. (2012). Tangled in a sparse spider web: Single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1341–1350. doi:10.1098/rspb.2011.2011.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Eberhard, W. G. (1982). Beetle horn dimorphism: Making the best of a bad lot. American Naturalist, 119, 420–426.CrossRefGoogle Scholar
  24. Elgar, M. A. (1991). Sexual cannibalism, size dimorphism, and courtship behavior in orb-weaving spiders (Araneidae). Evolution, 45(2), 444–448.CrossRefGoogle Scholar
  25. Elgar, M. A., Allan, R. A., & Evans, T. A. (1996). Foraging strategies in orb-spinning spiders: Ambient light and silk decorations in Argiope aetherea Walckenaer (Araneae: Araneoidea). Austral Ecology, 21(4), 464–467.CrossRefGoogle Scholar
  26. Elgar, M. A., & Jebb, M. (1999). Nest provisioning in the mud-dauber wasp Sceliphron laetum (F. Smith): Body mass and taxa specific prey selection. Behaviour, 136(2), 147–159.CrossRefGoogle Scholar
  27. Emlen, D. J., Marangelo, J., Ball, B., & Cunningham, C. W. (2005). Diversity in the weapons of sexual selection: horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution, 59(5), 1060–1084. doi:10.1111/j.0014-3820.2005.tb01044.x.CrossRefPubMedGoogle Scholar
  28. Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics, 28, 659–687.CrossRefGoogle Scholar
  29. Foelix, R. F. (2011). Biology of spiders (3rd ed.). New York: Oxford University Press.Google Scholar
  30. Fromhage, L. (2012). Mating unplugged: A model for the evolution of mating plug (dis-)placement. Evolution, 66(1), 31–39.CrossRefPubMedGoogle Scholar
  31. Garland, T., Dickerman, A. W., Janis, C. M., & Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Systematic Biology, 42(3), 265–292. doi:10.1093/sysbio/42.3.265.CrossRefGoogle Scholar
  32. Gidaszewski, N. A., Baylac, M., & Klingenberg, C. P. (2009). Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup. BMC Evolutionary Biology, 9(1), 110.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Goodman, B. A., Hudson, S. C., Isaac, J. L., & Schwarzkopf, L. (2009). The evolution of body shape in response to habitat: Is reproductive output reduced in flat lizards. Evolution, 63(5), 1279–1291. doi:10.1111/j.1558-5646.2009.00621.x.CrossRefPubMedGoogle Scholar
  34. Greenberg, R., & Olsen, B. (2010). Bill size and dimorphism in tidal-marsh sparrows: Island-like processes in a continental habitat. Ecology, 91(8), 2428–2436.CrossRefPubMedGoogle Scholar
  35. Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. Bioinformatics, 24(1), 129–131.CrossRefPubMedGoogle Scholar
  36. Head, G. (1995). Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (Class Araneae). Evolution, 49, 776–781.CrossRefGoogle Scholar
  37. Herberstein, M. E., Wignall, A. E., Nessler, S. H., Harmer, A. M. T., & Schneider, J. M. (2012). How effective and persistent are fragments of male genitalia as mating plugs? Behavioral Ecology, 23(5), 1140–1145.CrossRefGoogle Scholar
  38. Higgins, L. E. (1992). Developmental plasticity and fecundity in the orb-weaving spider Nephila clavipes. Journal of Arachnology, 20(2), 94–106. doi:10.2307/3705773.Google Scholar
  39. Hormiga, G., Scharff, N., & Coddington, J. (2000). The phylogenetic basis of sexual size dimorphism in orb-weaving spiders (Araneae, Orbiculariae). Systematic Biology, 49(3), 435–462.CrossRefPubMedGoogle Scholar
  40. Kaddour, K. B., El Mouden, E. H., Slimani, T., Bonnet, X., & Lagarde, F. (2008). Sexual dimorphism in the Greek tortoise: A test of the body shape hypothesis. Chelonian Conservation and Biology, 7(1), 21–27. doi:10.2744/CCB-0649.1.CrossRefGoogle Scholar
  41. Kaliontzopoulou, A., Carretero, M. A., & Llorente, G. A. (2007). Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in Podarcis lizards. Journal of Morphology, 268(2), 152–165.CrossRefPubMedGoogle Scholar
  42. Kaliontzopoulou, A., Carretero, M. A., & Llorente, G. A. (2008). Head shape allometry and proximate causes of head sexual dimorphism in Podarcis lizards: Joining linear and geometric morphometrics. Biological Journal of the Linnean Society, 93(1), 111–124.CrossRefGoogle Scholar
  43. Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463–1464.CrossRefPubMedGoogle Scholar
  44. Kitano, J., Spoljaric, M. A., & Reimchen, T. E. (2008). Habitat-dependent reduction of sexual dimorphism in geometric body shape of Haida Gwaii threespine stickleback. Biological Journal of the Linnean Society, 95(3), 505–516. doi:10.1111/j.1095-8649.2011.03161.x.CrossRefGoogle Scholar
  45. Kumschick, S., Fronzek, S., Entling, M. H., & Nentwig, W. (2011). Rapid spread of the wasp spider Argiope bruennichi across Europe: A consequence of climate change? Climatic Change, 109(3–4), 319–329. doi:10.1007/s10584-011-0139-0.CrossRefGoogle Scholar
  46. Kuntner, M., Agnarsson, I., & Li, D. (2015). The eunuch phenomenon: Adaptive evolution of genital emasculation in sexually dimorphic spiders. Biological Reviews, 90, 279–296. doi:10.1111/brv.12109.CrossRefPubMedGoogle Scholar
  47. Kuntner, M., & Coddington, J. A. (2009). Discovery of the largest orbweaving spider species: The evolution of gigantism in Nephila. PLoS ONE, 4(10), e7516. doi:10.1371/journal.pone.0007516.CrossRefPubMedCentralPubMedGoogle Scholar
  48. Kuntner, M., & Elgar, M. A. (2014). Evolution and maintenance of sexual size dimorphism: Aligning phylogenetic and experimental evidence. Frontiers in Ecology and Evolution, 2, 26. doi:10.3389/fevo.2014.00026.CrossRefGoogle Scholar
  49. Levi, H. W. (1983). The orb-weaver genera Argiope, Gea, and Neogea from the Western Pacific region (Araneae: Araneidae, Argiopinae). Bulletin of the Museum of Comparative Zoology, 150(5), 247–338.Google Scholar
  50. Levi, H. W. (2004). Comments and new records for the American genera Gea and Argiope with the description of a new species (Araneae: Araneidae). Bulletin of the Museum of Comparative Zoology, 158(2), 47–66.CrossRefGoogle Scholar
  51. Maddison, W. P., & Maddison, D. R. (2014). Mesquite: A modular system for evolutionary analysis. Version 3.0. http://mesquiteproject.org
  52. Minton, R. L., & Wang, L. L. (2011). Evidence of sexual shape dimorphism in Viviparus (Gastropoda: Viviparidae). Journal of Molluscan Studies,. doi:10.1093/mollus/eyr014.Google Scholar
  53. Moya-Laraño, J., Vinković, D., Allard, C., & Foellmer, M. W. (2009). Optimal climbing speed explains the evolution of extreme sexual size dimorphism in spiders. Journal of Evolutionary Biology, 22(5), 954–963.CrossRefPubMedGoogle Scholar
  54. Nessler, S. H., Uhl, G., & Schneider, J. M. (2009). Sexual cannibalism facilitates genital damage in Argiope lobata (Araneae: Araneidae). Behavioral Ecology and Sociobiology, 63(3), 355–362.CrossRefGoogle Scholar
  55. Olsson, M., Shine, R., Wapstra, E., Ujvari, B., & Madsen, T. (2002). Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution, 56(7), 1538–1542.CrossRefPubMedGoogle Scholar
  56. Pagel, M. (1997). Inferring evolutionary processes from phylogenies. Zoologica Scripta, 26(4), 331–348.CrossRefGoogle Scholar
  57. Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884.CrossRefPubMedGoogle Scholar
  58. Paradis, E., & Claude, J. (2002). Analysis of comparative data using generalized estimating equations. Journal of Theoretical Biology, 218(2), 175–185. doi:10.1006/jtbi.2002.3066.CrossRefPubMedGoogle Scholar
  59. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289–290.CrossRefPubMedGoogle Scholar
  60. Pekár, S. (2014). Comparative analysis of passive defences in spiders (Araneae). Journal of Animal Ecology, 83(4), 779–790. doi:10.1111/1365-2656.12177.CrossRefGoogle Scholar
  61. Prenter, J., Montgomery, W. I., & Elwood, R. W. (1997). Sexual dimorphism in northern temperate spiders: Implications for the differential mortality model. Journal of Zoology, 243(2), 341–349.CrossRefGoogle Scholar
  62. Preziosi, R. F., Fairbairn, D. J., Roff, D. A., & Brennan, J. M. (1996). Body size and fecundity in the waterstrider Aquarius remigis: A test of Darwin’s fecundity advantage hypothesis. Oecologia, 108(3), 424–431.CrossRefGoogle Scholar
  63. Price, T. D. (1984). The evolution of sexual size dimorphism in Darwin’s finches. American Naturalist, 23, 500–518.CrossRefGoogle Scholar
  64. Rao, D., Webster, M., Heiling, A. M., Bruce, M. J., & Herberstein, M. E. (2009). The aggregating behaviour of Argiope radon, with special reference to web decorations. Journal of Ethology, 27(1), 35–42.CrossRefGoogle Scholar
  65. Revell, L. J. (2011). Phytools: Phylogenetic tools for comparative biology (and other things). R Package.Google Scholar
  66. Revell, L. J., Johnson, M. A., Schulte, J. A., Kolbe, J. J., & Losos, J. B. (2007). A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution, 61(12), 2898–2912.CrossRefPubMedGoogle Scholar
  67. Scharf, I., & Meiri, S. (2013). Sexual dimorphism of heads and abdomens: Different approaches to ‘being large’ in female and male lizards. Biological Journal of the Linnean Society, 110(3), 665–673. doi:10.1111/bij.12147.CrossRefGoogle Scholar
  68. Scharff, N., & Coddington, J. A. (1997). A phylogenetic analysis of the orb-weaving spider family Araneidae (Arachnida, Araneae). Zoological Journal of the Linnean Society, 120(4), 355–434. doi:10.1111/j.1096-3642.1997.tb01281.x.CrossRefGoogle Scholar
  69. Schwarzkopf, L. (2005). Sexual dimorphism in body shape without sexual dimorphism in body size in water skinks (Eulamprus quoyii). Herpetologica, 61(2), 116–123. doi:10.1655/04-66.CrossRefGoogle Scholar
  70. Shine, R. (1989). Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Quarterly Review of Biology, 64, 419–461.CrossRefPubMedGoogle Scholar
  71. Spoljaric, M. A., & Reimchen, T. E. (2008). Habitat-dependent reduction of sexual dimorphism in geometric body shape of Haida Gwaii threespine stickleback. Biological Journal of the Linnean Society, 95(3), 505–516.CrossRefGoogle Scholar
  72. Temeles, E. J., Miller, J. S., & Rifkin, J. L. (2010). Evolution of sexual dimorphism in bill size and shape of hermit hummingbirds (Phaethornithinae): A role for ecological causation. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1543), 1053–1063. doi:10.1098/rstb.2009.0284.CrossRefGoogle Scholar
  73. Tso, I. M. (2004). The effect of food and silk reserve manipulation on decoration-building of Argiope aetheroides. Behaviour, 141(5), 603–616.CrossRefGoogle Scholar
  74. Valenzuela, N., Adams, D. C., Bowden, R. M., & Gauger, A. C. (2004). Geometric morphometric sex estimation for hatchling turtles: A powerful alternative for detecting subtle sexual shape dimorphism. Copeia, 2004(4), 735–742.CrossRefGoogle Scholar
  75. Vollrath, F., & Parker, G. A. (1992). Sexual dimorphism and distorted sex ratios in spiders. Nature, 360, 156–159.CrossRefGoogle Scholar
  76. Walter, A., & Elgar, M. A. (2012). The evolution of novel animal signals: Silk decorations as a model system. Biological Reviews, 87(3), 686–700. doi:10.1111/j.1469-185X.CrossRefPubMedGoogle Scholar
  77. Welke, K. W., & Schneider, J. M. (2012). Sexual cannibalism benefits offspring survival. Animal Behaviour, 83(1), 201–207. doi:10.1016/j.anbehav.2011.10.027.CrossRefGoogle Scholar
  78. Zhang, L., Han, L., Wang, Y., Zhao, T., Bao, X., & Nakagaki, M. (2013). The variability of mechanical properties and molecular conformation among different spider dragline fibers. Fibers and Polymers, 14(7), 1190–1195. doi:10.1007/s12221-013-1190-4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Evolutionary Zoology LaboratoryBiological Institute ZRC SAZULjubljanaSlovenia
  2. 2.Centre for Behavioural Ecology and Evolution, College of Life SciencesHubei UniversityWuhanChina
  3. 3.National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA

Personalised recommendations