Locomotor Mode and the Evolution of the Hindlimb in Western Mediterranean Anurans

Abstract

The evolutionary association between morphology, locomotor performance and habitat use is a central element of the ecomorphological paradigm, and it is known to underlie the evolution of phenotypic diversity in numerous animal taxa. In anuran amphibians the hindlimb acts as the propulsive agent, and as such, it is directly associated with jumping performance. In this study we combine individual- and species-level analyses to examine the effects of locomotor mode on body size and hindlimb morphology of Western Mediterranean anurans. In addition to the commonly studied hindlimb traits, we also examine the ratio between tibiofibula and femur length. Body size shows no signs of an evolutionary association to locomotor mode. Instead, hindlimb traits are significantly differentiated between locomotor groups, both at the individual and species levels. Specifically, we observe a gradient of tibiofibula to femur ratio values that matches biomechanical predictions. The analysis of adult static allometries indicates that these differences arise early in ontogeny. By comparing the fit of distinct evolutionary models we provide evidence that the locomotor mode adopted by each species to match the requirements of the habitat it frequents has shaped the evolution of the hindlimb, but not body size.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Araújo, M. B., & Pearson, R. G. (2005). Equilibrium of species’ distributions with climate. Ecography, 28, 693–695.

    Article  Google Scholar 

  2. Arnold, S. J. (1983). Morphology, performance and fitness. American Zoologist, 23, 347–361.

    Google Scholar 

  3. Beaulieu, J. M., & O’Meara, B. (2014). OUwie: Analysis of evolutionary rates in an OU framework. R package version 1.43. http://CRAN.R-project.org/package=OUwie

  4. Biewener, A. A. (1983). Locomotory stresses in the limb bones of two small mammals: The ground squirrel and chipmunk. Journal of Experimental Biology, 103, 131–154.

    CAS  PubMed  Google Scholar 

  5. Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745.

    Article  PubMed  Google Scholar 

  6. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference: A practical information-theoretic approach. The Netherlands: Springer.

    Google Scholar 

  7. Butler, M. A., & King, A. A. (2004). Phylogenetic comparative analysis: A modelling approach for adaptive evolution. The American Naturalist, 164, 683–695.

    Article  Google Scholar 

  8. Calow, L. J., & Alexander, R. M. C. N. (1973). A mechanical analysis of a hind leg of a frog (Rana temporaria). Journal of Zoology London, 171, 293–321.

    Article  Google Scholar 

  9. Choi, I., Shim, J. H., & Ricklefs, R. E. (2003). Morphometrics relationships of take-off speed in anuran amphibians. Journal of Experimental Zoology, 299, 99–102.

    Article  PubMed  Google Scholar 

  10. Collar, D. C., Schulte, J. A., & Losos, J. B. (2011). Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution, 65, 2664–2680.

    Article  PubMed  Google Scholar 

  11. Darwin, C. R. (1837–1838). Notebook B: Transmutation of species. http://darwin-online.org.uk/EditorialIntroductions/vanWyhe_notebooks.html.

  12. Darwin, C. R. (1845). Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. Fitz Roy, R.N.. London: John Murray.

    Google Scholar 

  13. Darwin, C. R. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.

    Book  Google Scholar 

  14. Eastman, J. M., Harmon, L. J., & Tank, D. C. (2013). Congruification: Support for time scaling large phylogenetic trees. Methods in Ecology and Evolution, 4, 688–691.

    Article  Google Scholar 

  15. Eberhard, W. G. (2008). Static allometry and animal genitalia. Evolution, 63, 48–66.

    Article  PubMed  Google Scholar 

  16. Emerson, S. B. (1976). Burrowing in frogs. Journal of Morphology, 149, 437–458.

    Article  Google Scholar 

  17. Emerson, S. B. (1978). Allometry and jumping in frogs: Helping the twain to meet. Evolution, 32, 551–564.

    Article  Google Scholar 

  18. Emerson, S. B. (1979). The ilio-sacral articulation in frogs: Form and function. Biological Journal of the Linnean Society, 11, 153–168.

    Article  Google Scholar 

  19. Emerson, S. B. (1985). Jumping and leaping. In M. E. Hildebrand, D. Bramble, K. Laim, & D. Wake (Eds.), Functional vertebrate morphology (pp. 58–76). Cambridge, MA: Harvard Univ. Press.

    Google Scholar 

  20. Emerson, S. B. (1986). Heterochrony and frogs: The relationship of a life-history trait to morphological form. American Naturalist, 127, 167–183.

    Article  Google Scholar 

  21. Emerson, S. B. (1988). Convergence and morphological constraint in frogs: Variation in postcranial morphology. Fieldiana Zoological, 43, 1–19.

    Google Scholar 

  22. García-París, M., Montori, A., & Herrero, P. (2004). Amphibia: Lissamphibia. In M. A. Ramos (Ed.), Fauna Ibérica (Vol. 24). Madrid: Museo Nacional de Ciencias Naturales. CSIC.

    Google Scholar 

  23. Gomes, F. R., Rezende, E. L., Grizante, M. B., & Navas, C. A. (2009). The evolution of jumping performance in anurans: Morphological correlates and ecological implications. Journal of Evolutionary Biology, 22, 1088–1097.

    Article  CAS  PubMed  Google Scholar 

  24. Gómez, A., & Lunt, D. H. (2007). Refugia within refugia: Patterns of phylogeograpic concordance in the Iberian Peninsula. In S. Weiss & N. Ferrand (Eds.), Phylogeography of southern European refugia. The Netherlands: Springer.

    Google Scholar 

  25. Gomez-Mestre, I., & Buchholz, D. R. (2006). Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proceedings of the National Academy of Sciences USA, 103(50), 19021–19026.

    Article  CAS  Google Scholar 

  26. Gomez-Mestre, I., Saccoccio, V. L., Iijima, T., Collins, E. M., Rosenthal, G. G., & Warkentin, K. M. (2010). The shape of things to come: Linking developmental plasticity to postmetamorphic morphology in anurans. Journal of Evolutionary Biology, 23, 1364–1373.

    Article  CAS  PubMed  Google Scholar 

  27. Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41, 587–640.

    Article  CAS  PubMed  Google Scholar 

  28. Gray, J. (1968). Animal locomotion. London: William Cloes and Sons Ltd.

    Google Scholar 

  29. Grizante, M. B., Navas, C. A., Garland, T., & Kohlsdorf, T. (2010). Morphological evolution in Tropidurinae squamates: An integrated view along a continuum of ecological settings. Journal of Evolutionary Biology, 23, 98–111.

    Article  CAS  PubMed  Google Scholar 

  30. Handrigan, G. R., & Wassersug, R. J. (2007). The anuran Bauplan: A review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology. Biological Reviews, 82, 1–25.

    Article  PubMed  Google Scholar 

  31. Hansen, T. F. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution, 51, 1341–1351.

    Article  Google Scholar 

  32. Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. Bioinformatics, 24, 129–131.

    Article  CAS  PubMed  Google Scholar 

  33. Harrington, S. M., Harrison, L. B., & Sheil, C. A. (2013). Ossification sequence heterochrony among amphibians. Evolution & Development, 15, 344–364.

    CAS  Google Scholar 

  34. Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68, 87–112.

    Article  Google Scholar 

  35. Hewitt, G. M. (2001). Speciation, hybrid zones and phylogeography–or seeing genes in space and time. Molecular Ecology, 10, 537–549.

    Article  CAS  PubMed  Google Scholar 

  36. Hildebrand, M. (1974). Analysis of vertebrate structure. New York: John Wiley and Sons.

    Google Scholar 

  37. Irschick, D. J., Meyers, J. J., Husak, J. F., & Le Galliard, J. F. (2008). How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evolutionary Ecology Research, 10, 177–196.

    Google Scholar 

  38. Jorgensen, M. E., & Reilly, S. M. (2013). Phylogenetic patterns of skeletal morphometrics and pelvic traits in relation to locomotor mode in frogs. Journal of Evolutionary Biology, 26, 929–943.

    Article  CAS  PubMed  Google Scholar 

  39. Kingsolver, J. G., & Huey, R. B. (2003). Introduction: The evolution of morphology, performance, and fitness. Integrative and Comparative Biology, 43, 361–366.

    Article  PubMed  Google Scholar 

  40. Koehl, M. A. R. (1996). When does morphology matter? Annual Review of Ecology and Systematics, 27, 501–542.

    Article  Google Scholar 

  41. Kohlsdorf, T., Garland, T., & Navas, C. A. (2001). Limb and tail lengths in relation to substrate usage in Tropidurus lizards. Journal of Morphology, 248, 151–164.

    Article  CAS  PubMed  Google Scholar 

  42. Lee, M. S. Y., Skinner, A., & Camacho, A. (2013). The relationship between limb reduction, body elongation and geographical range in lizards (Lerista, Scincidae). Journal of Biogeography, 40, 1290–1297.

    Article  Google Scholar 

  43. Llewelyn, J., Phillips, B. L., Alford, R. A., Schwarzkopf, L., & Shine, R. (2010). Locomotor performance in an invasive species: Cane toads from the invasion front have greater endurance, but not speed, compared to conspecifics from a long-colonised area. Oecologia, 162, 343–348.

    Article  PubMed  Google Scholar 

  44. Losos, J. B. (2009). Lizards in an evolutionary tree: Ecology and adaptive radiations of anoles. Berkeley, CA: Univ. of California Press.

    Google Scholar 

  45. Losos, J. B. (2011). Convergence, adaptation, and constraints. Evolution, 65, 1827–1840.

    Article  PubMed  Google Scholar 

  46. Lowe, W. H., & McPeek, M. A. (2012). Can natural selection maintain long-distance dispersal? Insight from a stream salamander system. Evolutionary Ecology, 26, 11–24.

    Article  Google Scholar 

  47. Mahler, D. L., Revell, L. J., Glor, R. E., & Losos, J. B. (2010). Ecological opportunity and the rate of morphological evolution in the diversification of greater Antillean anoles. Evolution, 64, 2731–2745.

    Article  PubMed  Google Scholar 

  48. Martínez-Solano, I., Gonçalves, H. A., Arntzen, J. W., & García-París, M. (2004). Phylogentic relationships and biogeography of midwife toads (Discoglossidae: Alytes). Journal of Biogeography, 31, 603–618.

    Article  Google Scholar 

  49. Moen, D. S., & Wiens, J. J. (2009). Phylogenetic evidence for competitively-driven divergence: Body-size evolution in Caribbean treefrogs (Hylidae: Osteopilus). Evolution, 63, 195–214.

    Article  CAS  PubMed  Google Scholar 

  50. Nomura, F., Rossa-Feres, D. C., & Langeani, F. (2009). Burrowing behavior of Dermatonotus muelleri (Anura, Microhylidae) with reference to the origin of the burrowing behavior of Anura. Journal of Ethology, 27, 195–201.

    Article  Google Scholar 

  51. Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., & Isaac, N., et al. (2012). Caper: Comparative analyses of phylogenetics and evolution in R. R package version 0.5. http://CRAN.R-project.org/package=caper

  52. Pagel, M. (1994). Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London. Series B: Biological Sciences, 255, 37–45.

    Article  Google Scholar 

  53. Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.

    Article  CAS  PubMed  Google Scholar 

  54. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analysis of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.

    Article  CAS  PubMed  Google Scholar 

  55. Pough, F. H., Magnusson, W. E., Ryan, M. J., Wells, K. D., & Taigen, T. L. (1992). Behavioral energetics. In M. E. Ferder & W. W. Burggren (Eds.), Environmental physiology of amphibians. Chicago: The Univ. Chicago Press.

    Google Scholar 

  56. Pounds, J. A., Jackson, J. F., & Shively, S. H. (1983). Allometric growth of the hind limbs of some terrestrial iguanid lizards. American Midland Naturalist, 110, 201–207.

    Article  Google Scholar 

  57. Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and cecilians. Molecular Phylogenetics and Evolution, 61, 543–583.

    Article  PubMed  Google Scholar 

  58. Rage, J.-C., & Roček, Z. (2003). Evolution of anuran assemblages in the Tertiary and Quaternary of Europe, in the context of palaeoclimate and palaeogeography. Amphibia-Reptilia, 24, 133–167.

    Article  Google Scholar 

  59. Rand, A. S. (1952). Jumping ability of certain anurans, with notes on endurance. Copeia, 1952, 15–20.

    Article  Google Scholar 

  60. Revell, L. J. (2010). Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution, 1, 319–329.

    Article  Google Scholar 

  61. Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.

    Article  Google Scholar 

  62. Richter-Boix, A., Llorente, G. A., & Montori, A. (2006). Effects of phenotypic plasticity on post-metamorphic traits during pre-metamorphic stages in the anuran Pelodytes punctatus. Evolutionary Ecology Research, 8, 309–320.

    Google Scholar 

  63. Roelants, K., Gower, D. J., Wilkinson, M., Loader, S. P., Biju, S. D., Guillaume, K., et al. (2007). Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences USA, 104, 887–892.

    Article  CAS  Google Scholar 

  64. Sanger, T. J., Sherratt, E., McGlothlin, J. W., Brodie, E. D, I. I. I., Losos, J. B., & Abzhanov, A. (2013). Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies. Evolution, 67, 2180–2193.

    Article  PubMed  Google Scholar 

  65. Schmitt, T. (2007). Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology, 4, 1–13.

    Article  Google Scholar 

  66. Sokal, R. R., & Rohlf, F. J. (2012). Biometry (4th ed.). New York: W.H. Freeman & Co.

    Google Scholar 

  67. Trochet, A., Moulherat, S., Calvez, O., Stevens, V. M., Clobert, J., & Schmeller, D. S. (2014). A database of life-history traits of European amphibians. Biodiversity Data Journal, 2, e4123.

    Article  PubMed  Google Scholar 

  68. Vera, M. C., & Ponssa, M. L. (2014). Skeletogenesis in anurans: Cranial and postcranial development in metamorphic and postmetamorphic stages of Leptodactylus bufonius (Anura: Leptodactylidae). Acta Zoologica Stockholm, 95, 44–62.

    Article  Google Scholar 

  69. Vidal-García, M., Byrne, P. G., Roberts, J. D., & Keogh, J. S. (2014). The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of Australo-Papuan myobatrachid frogs. Journal of Evolutionary Biology, 27, 181–192.

    Article  Google Scholar 

  70. Warton, D. I., Duursma, R. A., Falster, D. S., & Taskinen, S. (2012). smart 3—an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257–259.

    Article  Google Scholar 

  71. Wells, K. D. (2007). The ecology and behavior of amphibians. Chicago and London: The Univ. Chicago Press.

    Book  Google Scholar 

  72. Wilson, M. P., Espinoza, N. R., Shah, S. R., & Blob, R. W. (2009). Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion. The Anatomical Record, 292, 935–944.

    Article  PubMed  Google Scholar 

  73. Zug, G. R. (1972). Anuran locomotion: Structure and function. 1. Preliminary observations on the relation between jumping and osteometrics of appendicular and postaxial skeleton. Copeia, 1972, 613–624.

    Article  Google Scholar 

  74. Zug, G. R. (1978). Anuran locomotion–structure and function, 2: Jumping performance of semiaquatic, terrestrial, and arboreal frogs. Smithson Contributions to Zoology, 276, 1–31.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Museo Nacional de Ciencias Naturales and Jenar Fèlix Franquesa for specimen loans. We are grateful to Ivan Gomez-Mestre and two anonymous reviewers for valuable comments on the manuscript. UEU was supported by a Ph.D. grant (BES-2013-063203) from Ministerio de Economía y Competitividad (MEC). AK was supported by a post-doctoral Grant (SFRH/BPD/68493/2010) by Fundação para a Ciéncia e a Tecnologia (FCT, Portugal), and partially by project “Biodiversity, Ecology and Global Change” co-financed by North Portugal Regional Operational Programme 2007/2013 (ON.2–O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Urtzi Enriquez-Urzelai.

Additional information

Data available from the Dryad Digital Repository: http://doi.org/10.5061/dryad.d3v78.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1180 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Enriquez-Urzelai, U., Montori, A., Llorente, G.A. et al. Locomotor Mode and the Evolution of the Hindlimb in Western Mediterranean Anurans. Evol Biol 42, 199–209 (2015). https://doi.org/10.1007/s11692-015-9311-1

Download citation

Keywords

  • Ecological diversification
  • Phylogenetic comparative method
  • Modes of displacement
  • Allometry