Skip to main content

Advertisement

Log in

Ecological Marginalization Facilitated Diversification in Conifers

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Species selection occurs when species traits influence speciation or extinction. But it is often difficult to demonstrate a net effect of traits on diversification, for example due to balancing effects of extinction and speciation. We tested if, since conifers lost their former status of dominant land plants to angiosperm trees, their extant diversity shows a signature of traits conferring resistance to extinction. We compared extant species richness across conifer genera in relation to phenotypic and ecological traits predicted to affect speciation and/or extinction, in two geographic regions that experienced distinct regimes of extinction and species turnover (the northern vs. southern hemispheres). Species richness had low phylogenetic signal across conifer genera, and species-rich genera were not older than species-poor ones, indicating intrinsic differences in diversification. High-altitude genera, which are ecologically more dissimilar to angiosperm trees, were more species-rich, suggesting that distinctiveness from angiosperm competitors facilitated conifer diversification. This effect seems more due to increased speciation than to reduced extinction, because it was unique to northern hemisphere genera, where rates of extinction and species turnover have been higher than in the south. We found no strong evidence that resistance to extinction was the main mechanism of species selection in conifers. Instead, having a marginal ecological niche relative to angiosperm competitors facilitated diversification in conifers, likely due to increased speciation. Resistance to extinction may nonetheless have been important in certain ancient lineages, and we discuss suggestive results for traits that may explain the endurance of such lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acharya, B. K., Chettri, B., & Vijayan, L. (2011). Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. Acta Oecologica, 37, 329–336.

    Article  Google Scholar 

  • Adams, R. P., Bartel, J. A., & Price, R. A. (2009). A new genus, Hesperocyparis, for the cypresses of the Western hemisphere. Phytologia, 91, 160–185.

    Google Scholar 

  • Biffin, E., Brodribb, T. J., HIll, R. S., Thomas, P., & Lowe, A. J. (2012). Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. PRoceedings of the Royal Society B, 279, 341–348.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown, J. H., & Kodric-Brown, A. (1977). Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology, 58(2), 445–449.

    Article  Google Scholar 

  • Brummitt, R. K. (2001). World geographical scheme for recording plant distributions. Pittsburgh: Hunt Institute for Botanical Documentation, Carnie Mellon Univeristy.

    Google Scholar 

  • Carlquist, S. (1967). The biota of long-distance dispersal. V. Plant dispersal to Pacific Islands. Bulletin of the Torrey Botanical Club, 94, 129–162.

    Article  Google Scholar 

  • Carstens, B. C., & Knowles, L. L. (2007). Shifting distributions and speciation: Species divergence during rapid climate change. Molecular Ecology, 16(3), 619–627.

    Article  PubMed  Google Scholar 

  • Charles-Dominique, P. (1993). Speciation and coevolution: An interpretation of frugivory phenomena. Vegetatio, 107(108), 75–84.

    Google Scholar 

  • Crepet, W. L., & Niklas, K. J. (2009). Darwin’s second “abominable mystery”: Why are there so many angiosperm species. American Journal of Botany, 96, 366–381.

    Article  PubMed  Google Scholar 

  • Dodd, M. E., Silvertown, J., & Chase, M. W. (1999). Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution, 53(3), 732–744.

    Article  Google Scholar 

  • Eastman, J. M., & Storfer, A. (2011). Correlations of life-history and distributional-range variation with salamander diversification rates: Evidence for species selection. Systematic Biology, 60, 503–518.

    Article  PubMed  Google Scholar 

  • Eriksson, O., & Bremer, B. (1992). Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. Evolution, 46(1), 258–266.

    Article  Google Scholar 

  • Farjon A. 2008. A Natural History of Conifers: Timber Press.

  • Farjon, A. (2010). A handbook of the world’s conifers. Leiden, Netherlands: Brill Academic Publishers.

    Book  Google Scholar 

  • Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. American Naturalist, 160, 712–726.

    Article  CAS  PubMed  Google Scholar 

  • Gehrke, B., & Linder, H. P. (2011). Time, space and ecology: Why some clade and more species than others. Journal of Biogeography, 38, 1948–1962.

    Article  Google Scholar 

  • Goldberg, E. E., Kohn, J. R., Lande, R., Robertson, K. A., Smith, S. A., & Igic, B. (2010). Species selection maintains self-incompatibility. Science, 330, 493–495.

  • Gorelick, R. (2001). Did insect pollination cause increased seed plant diversity? Biological Journal of the Linnean Society, 74(4), 407–427.

    Article  Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge: Harvard University Press.

  • Heilbuth, J. C. (2000). Lower species richness in dioecious clades. American Naturalist, 156(3), 221–241.

    Article  Google Scholar 

  • Holsinger, K. E. (2000). Reproductive systems and evolution in vascular plants. Proceedings of the National Academy of Sciences, 97(13), 7037–7042.

    Article  CAS  Google Scholar 

  • Ikeda, H., Nishikawa, M., & Sota, T. (2012). Loss of flight promotes beetle diversification. Nature Communications, 3, 648.

  • Jablonski, D. (1996). Body size and macroevolution. In D. Jablonski, D. H. Erwin, & J. H. Lipps (Eds.), Evolutionary paleobiology. Chicago: University of Chicago.

    Google Scholar 

  • Jablonski, D. (2008). Species selection: Theory and data. Annual Review of Ecology, Evoution, and Systematics, 39, 501–524.

    Article  Google Scholar 

  • Jones, K. E., Purvis, A., & Gittleman, J. L. (2003). Biological correlates of extinction risk in bats. American Naturalist, 161, 601–614.

    Article  PubMed  Google Scholar 

  • Kay, K. M., & Sargent, R. D. (2009). The role of animal pollination in plant speciation: Integrating ecology, geography, and genetics. Annual Review of Ecology Evolution and Systematics, 40(1), 637–656.

    Article  Google Scholar 

  • Kay, K. M., Voelckel, C., Yang, J. Y., Hufford, K. M., Kaska, D. D., & Hodges, S. A. (2006). Floral characters and species diversification. In L. D. Harder & S. C. H. Barrett (Eds.), Ecology and Evolution of flowers. New York: Oxford University Press.

    Google Scholar 

  • Keller, L. (1999). Levels of selection in evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Leslie AB, Beaulieu JM, Crane PR, Donoghue MJ. 2013. Explaining the distribution of breeding and dispersal syndromes in conifers.

  • Leslie, A. B., Beaulieu, J. M., Rai, H. S., Crane, P. R., Donoghue, M. J., & Mathews, S. (2012). Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences, 109, 16217–16221.

    Article  CAS  Google Scholar 

  • Levin, D. A. (2006). Ancient dispersals, propagule pressure, and species selection in flowering plants. Systematic Botany, 31, 443–448.

    Article  Google Scholar 

  • Little, D. P. (2006). Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Systematic Botany, 31, 461–480.

    Article  Google Scholar 

  • Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995–1007.

    Article  PubMed  Google Scholar 

  • Maddison, W. P., Midford, P. E., & Otto, S. P. (2007). Estimating a binary character’s effect on speciation and extinction. Systematic Biology, 56(5), 701–710.

    Article  PubMed  Google Scholar 

  • Mao, K., Hao, G., Liu, J., Adams, R. P., & Milne, R. I. (2010). Diversification and biogeography of Juniperus (Cupressaceae): Variable diversification rates and multiple intercontinental dispersal. New Phytologist, 188, 254–272.

    Article  CAS  PubMed  Google Scholar 

  • Marzluff, J. M., & Dial, K. P. (1991). Life history correlates of taxonomic diversity. Ecology, 72(2), 428–439.

    Article  Google Scholar 

  • Mathews, S. (2009). Phylogenetic relationships among seed plants: Persistent questions and the limits of molecular data. American Journal of Botany, 96(1), 228–236.

    Article  PubMed  Google Scholar 

  • Maurice, S., Belhassen, E., Couvet, D., & Gouyon, P. H. (1994). Evolution of dioecy: Can nuclear-cytoplasmic interactions select for maleness? Heredity, 73, 346–354.

    Article  PubMed  Google Scholar 

  • McCain, C. M. (2005). Elevational gradients in diversity of small mammals. Ecology, 86, 366–372.

    Article  Google Scholar 

  • McInnes, L., Orme, C. D. L., & Purvis, A. (2011). Detecting shifts in diversity limits from molecular phylogenies: What can we know? Proceedings of the Royal Society B: Biological Sciences, 278(1722), 3294–3302.

    Article  PubMed Central  PubMed  Google Scholar 

  • Midgley, J. J., & Bond, W. J. (1991). Ecological aspects of the rise of angiosperms: A challenge to the reproductive superiority hypotheses. Biological Journal of the Linnean Society, 44(2), 81–92.

    Article  Google Scholar 

  • Moen, D. S., & Morlon, H. (2014). Why does diversification slow down? Trends in Ecology & Evolution, 29, 190–197.

    Article  Google Scholar 

  • Moles, A. T., & Westoby, M. (2004). Seedling survival and seed size: A synthesis of the literature. Journal of Ecology, 92(3), 372–383.

    Article  Google Scholar 

  • Moore, B. R., & Donoghue, M. J. (2009). A Bayesian approach for evaluating the impact of historical events on rates of diversification. Proceedings of the National Academy of Sciences, 106(11), 4307–4312.

    Article  CAS  Google Scholar 

  • Morlon, H., Parsons, T. L., & Plotkin, J. B. (2011). Reconciling molecular phylogenies with the fossil record. Proceedings of the National Academy of Sciences, 108(39), 16327–16332.

    Article  CAS  Google Scholar 

  • Niklas, K. J., Tiffney, B. H., & Knoll, A. H. (1980). Apparent changes in the diversity of fossil plants: A preliminary assessment80. Evolutionary Biology, 12, 1–89.

    Google Scholar 

  • Niklas, K. J., Tiffney, B. H., & Knoll, A. H. (1983). Patterns in vascular land plants diversification. Nature, 303, 614–616.

    Article  Google Scholar 

  • Nunn, C. L. (2011). The comparative approach in evolutionary anthropology and biology. Chicago: Chicago University Press.

    Book  Google Scholar 

  • O’Hara, R. B., & Kotze, D. J. (2010). Do not log-transform count data. Methods in Ecology and Evolution, 1(2), 118–122.

    Article  Google Scholar 

  • O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality and Quantity, 41, 672–690.

    Google Scholar 

  • Oomen, M. A., & Shanker, K. (2005). Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology, 86, 3039–3047.

    Article  Google Scholar 

  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Medina, E., & Falcon-Lang, H. J. (2012). Cretaceous forest composition and productivity inferred from a global fossil wood database. Geology, 40, 219–222.

    Article  Google Scholar 

  • Phillimore, A. B., Freckleton, R. P., Orme, C. D. L., & Owens, I. P. F. (2006). Ecology predicts large-scale patterns of phylogenetic diversification in birds. American Naturalist, 168, 220–229.

    Article  PubMed  Google Scholar 

  • Price, S. A., Hopkins, S. S. B., Smith, K. K., & Roth, V. L. (2012). Tempo of trophic evolution and tis impact on mammalian diversification. Proceedings of the National Academy of Sciences, 109, 7008–7012.

    Article  CAS  Google Scholar 

  • Purvis, A., Agapow, P.-M., Gittleman, J. L., & Mace, G. M. (2000). Nonrandom extinction and the loss of evolutionary history. Science, 288(5464), 328–330.

    Article  CAS  PubMed  Google Scholar 

  • Rabosky, D. L. (2009). Ecological limits and diversification rate: Alternative paradigms to explain the variation in species richness among clades and regions. Ecology Letters, 12, 735–743.

    Article  PubMed  Google Scholar 

  • Rabosky, D. L., & McCune, A. R. (2010). Reinventing species selection with molecular phylogenies. Trends in Ecology and Evolution, 25, 68–74.

    Article  PubMed  Google Scholar 

  • Rahbek, C. (1995). The elevational gradient of species richness: A uniform pattern? Ecography, 18, 200–205.

    Article  Google Scholar 

  • Rahbek, C. (1997). The relationship among area, elevation and regional species richness in neotropical birds. American Naturalist, 149, 875–902.

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs, R. E., & Renner, S. S. (1994). Species richness within families of flowering plants. Evolution, 48(5), 1619–1636.

    Article  Google Scholar 

  • Ricklefs, R. E., & Renner, S. S. (2012). Global correlations in tropical tree species richness and abundances reject neutrality. Science, 335, 464–467.

  • Rieseberg, L. H., & Willis, J. H. (2007). Plant speciation. Science (New York, N.Y.), 317(5840), 910–914.

    Article  CAS  Google Scholar 

  • Ruhfel, B., Gitzendanner, M., Soltis, P., Soltis, D., & Burleigh, J. (2014). From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology, 14(1), 23.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rumeu, B., Afonso, V., Fernández-Palacios, J. M., & Nogales, M. (2014). Diversity, distribution and conservation status of island conifers: A global review. Diversity and Distributions, 20(3), 272–283.

    Article  Google Scholar 

  • Siepielski, A. M., & Benkman, C. W. (2007). Selection by a predispersal seed predator constrains the evolution of avian seed dispersal in pines. Functional Ecology, 21(3), 611–618.

    Article  Google Scholar 

  • Simpson, C. (2013). Species selection and the macroevolution of coral coloniality and photosymbiosis. Evolution, 67, 1607–1621.

  • Slatyer, R. A., Hirst, M., & Sexton, J. P. (2013). Niche breadth predicts geographical range size: A general ecological pattern. Ecology Letters, 16(8), 1104–1114.

    Article  PubMed  Google Scholar 

  • Stanley, S. M. (1986). Population size, extinction, and speciation: The fission effect in Neogene Bivalvia. Paleobiology, 12, 89–110.

    Google Scholar 

  • Sullivan, M. S., Gilbert, F., Rotheray, G., Croasdale, S., & Jones, M. (2000). Comparative analyses of correlates of Red data book status: A case study using European hoverflies (Diptera: Syrphidae). Animal Conservation, 3(2), 91–95.

    Article  Google Scholar 

  • Vamosi, J. C., Otto, S. P., & Barrett, S. C. H. (2003). Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. Journal of Evolutionary Biology, 16(5), 1006–1018.

    Article  CAS  PubMed  Google Scholar 

  • Verdú, M. (2002). Age at maturity and diversification in woody angiosperms. Evolution, 56, 1352–1361.

    Article  PubMed  Google Scholar 

  • Vrba, E. S. (1980). Evolution, species and fossils: How does life evolve? South African Journal of Science, 76, 61–84.

    Google Scholar 

  • Vrba, E. S. (1987). Ecology in relation to speciation rates: Some case histories of Miocene-recent mammals clades. Evolutionary Ecology, 1, 283–300.

    Article  Google Scholar 

  • Waser, N. M., & Campbell, D. R. (2004). Adaptive speciation in flowering plants. In U. Dieckmann, H. Metz, H. Doebeli, & D. Tautz (Eds.), Adaptive speciation. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33(1), 125–159.

    Article  Google Scholar 

  • Wiens, J. J., Parra-Olea, G., García-París, M., & Wake, D. B. (2007). Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders. PRoceedings of the Royal Society B, 274, 919–928.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Andrew Leslie for access to the molecular phylogeny of conifers, and for comments on an earlier version of the manuscript. GC was supported by the postdoctoral fellowship SFRH/BPD/46873/2008, and CG by the IF-Investigator Programme, both from the from the Fundação para a Ciência e a Tecnologia (FCT). This work was supported by FCT grant PTDC/BIA-ECS/116521/2010) to CG and co-funded by the European Program COMPETE: FCOMP-01-0124-FEDER-019772. Our research institution was partly supported by the Project “Genomics and Evolutionary Biology”, cofinanced by North Portugal Regional Operational Programme 2007/2013 (ON.2—O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina García.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, G.C., Cortesão, M. & García, C. Ecological Marginalization Facilitated Diversification in Conifers. Evol Biol 42, 146–155 (2015). https://doi.org/10.1007/s11692-015-9306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9306-y

Keywords

Navigation