Evolutionary Biology

, Volume 42, Issue 1, pp 54–62

Disentangling the Consequences of Growth Temperature and Adult Acclimation Temperature on Starvation and Thermal Tolerance in the Red Flour Beetle

Research Article


Temperature affects most aspects of animal life, and impacts particularly strongly on ectotherms. We studied the combined effects of growth temperature and adult acclimation temperature on starvation tolerance, cold tolerance, and heat tolerance in the red flour beetle. A lower adult acclimation temperature enhanced starvation tolerance and cold tolerance and impaired heat tolerance. This is an expected outcome of short-term plasticity and of the beneficial acclimation hypothesis. The higher growth temperature led to improved performance of all three measured traits: beetles raised under higher temperature tolerated starvation longer and showed better cold and heat tolerance. While this result fits well the rule “hotter is better”, it is nonetheless surprising that the same temperature had opposite effects when experienced by juveniles and adults (i.e., the effect of the warm temperature on cold tolerance). We emphasize the importance of separating between the juvenile growth temperature (developmental plasticity) and adult temperature (acclimation), as they can have opposite effects on adult performance.


Chill-coma recovery Heat knockdown Hotter is better Starvation endurance Stress Survival Tribolium 

Supplementary material

11692_2014_9298_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)


  1. Abramoff, M. D., Magalhaes, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11, 36–42.Google Scholar
  2. Angilletta, M. J., Huey, R. B., & Frazier, M. R. (2010). Thermodynamic effects on organismal performance: Is hotter better? Physiological and Biochemical Zoology, 83, 197–206.CrossRefPubMedGoogle Scholar
  3. Bowler, K. (2005). Acclimation, heat shock and hardening. Journal of Thermal Biology, 30, 125–130.CrossRefGoogle Scholar
  4. Bradley, B. P. (1978). Increase in range of temperature tolerance by acclimation in the copepod Eurytemora affinis. Biological Bulletin, 154, 177–187.CrossRefGoogle Scholar
  5. Bubliy, O. A., Kristensen, T. N., Kellermann, V., & Loeschcke, V. (2012). Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster. Functional Ecology, 26, 245–253.CrossRefGoogle Scholar
  6. Campbell, J. F., & Runnion, C. (2003). Patch exploitation by female red flour beetles, Tribolium castaneum. Journal of Insect Science, 3, 20.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Campbell, J. F., Toews, M. D., Arthur, F. H., & Arbogast, R. T. (2010). Long-term monitoring of Tribolium castaneum in two flour mills: Seasonal patterns and impact of fumigation. Journal of Economic Entomology, 103, 991–1001.CrossRefPubMedGoogle Scholar
  8. Chen, C. P., Lee, R. E., & Denlinger, D. L. (1991). Cold shock and heat shock: A comparison of the protection generated by brief pretreatment at less severe temperatures. Physiological Entomology, 16, 19–26.CrossRefGoogle Scholar
  9. Clark, M. S., & Worland, M. R. (2008). How insects survive the cold: Molecular mechanisms—A review. Journal of Comparative Physiology B, 178, 917–933.CrossRefGoogle Scholar
  10. Colinet, H., & Hoffmann, A. A. (2012). Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Functional Ecology, 26, 84–93.CrossRefGoogle Scholar
  11. David, R. J., Gibert, P., Pla, E., Petavy, G., Karan, D., & Moreteau, B. (1998). Cold stress tolerance in Drosophila: Analysis of chill coma recovery in D. melanogaster. Journal of Thermal Biology, 23, 291–299.CrossRefGoogle Scholar
  12. Deere, J. A., & Terblanche, S. L. (2006). Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. The American Naturalist, 168, 630–644.CrossRefPubMedGoogle Scholar
  13. DeWitt, T. S., & Scheiner, S. M. (2004). Phenotypic variation from single genotypes: A primer. In T. S. DeWitt & S. M. Scheiner (Eds.), Phenotypic plasticity: Functional and conceptual approaches (pp. 1–9). Oxford, UK: Oxford University Press.Google Scholar
  14. Dhileepan, K., Treviño, M., & Raghu, S. (2005). Effect of temperature on the survival of Aconophora compressa Walker (Hemiptera: Membracidae): Implications for weed biocontrol. Australian Journal of Entomology, 44, 457–462.CrossRefGoogle Scholar
  15. Edwards, D. K. (1958). Effects of acclimitization and sex on respiration and thermal resistance in Tribolium (Coleoptera: Tenebrionidae). Canadian Journal of Zoology, 36, 363–382.CrossRefGoogle Scholar
  16. Fischer, K., Eenhoorn, E., Bot, A. N. M., Brakefield, P. M., & Zwaan, B. J. (2003). Cooler butterflies lay larger eggs: Developmental plasticity versus acclimation. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270, 2051–2056.CrossRefGoogle Scholar
  17. Geister, T. L., & Fischer, K. (2007). Testing the beneficial acclimation hypothesis: Temperature effects on mating success in a butterfly. Behavioral Ecology, 18, 658–664.CrossRefGoogle Scholar
  18. Gibert, P., Huey, R. B., & Gilchrist, G. W. (2001a). Locomotor performance of Drosophila melanogaster: Interactions among developmental and adult temperatures, age, and geography. Evolution, 55, 205–209.CrossRefPubMedGoogle Scholar
  19. Gibert, P., Moreteau, B., Petavy, G., Karan, D., & David, J. R. (2001b). Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution, 55, 1063–1068.CrossRefPubMedGoogle Scholar
  20. Gilchrist, G. W., & Huey, R. B. (2001). Parental and developmental temperature effects on the thermal dependence of fitness in Drosophila melanogaster. Evolution, 55, 209–214.CrossRefPubMedGoogle Scholar
  21. Grazer, V. M., & Martin, O. Y. (2012). Elevated temperature changes female costs and benefits of reproduction. Evolutionary Ecology, 26, 625–637.CrossRefGoogle Scholar
  22. Hoffmann, A. A., Dagher, H., Hercus, M., & Berrigan, D. (1997). Comparing different measures of heat resistance in selected lines of Drosophila melanogaster. Journal of Insect Physiology, 43, 393–405.CrossRefPubMedGoogle Scholar
  23. Hoffmann, A. A., Hallas, R., Anderson, A. R., & Telonis-Scott, M. (2005). Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. Journal of Evolutionary Biology, 18, 804–810.CrossRefPubMedGoogle Scholar
  24. Huey, R. B., & Berrigan, D. (1996). Testing evolutionary hypotheses of acclimation. In I. S. Johnston & A. F. Bennett (Eds.), Animals and temperature: Phenotypic and evolutionary adaptation (pp. 205–237). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  25. Huey, R. B., Berrigan, D., Gilchrist, G. W., & Herron, J. C. (1999). Testing the adaptive significance of acclimation: A strong inference hypothesis. American Zoologist, 39, 323–336.Google Scholar
  26. Huey, R. B., Crill, W. D., Kingsolver, J. G., & Weber, K. E. (1992). A method for rapid measurement of heat or cold resistance of small insects. Functional Ecology, 6, 489–494.CrossRefGoogle Scholar
  27. Huey, R. B., Wakefield, T., Crill, W. D., & Gilchrist, G. W. (1995). Within- and between-generation effects of temperature on early fecundity of Drosophila melanogaster. Heredity, 74, 216–223.Google Scholar
  28. Jensen, D., Overgaard, J., & Sørensen, J. G. (2007). The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. Journal of Insect Physiology, 53, 186–197.CrossRefGoogle Scholar
  29. Karl, I., & Fischer, K. (2009). Altitudinal and environmental variation in lifespan in the Copper butterfly Lycaena tityrus. Functional Ecology, 23, 1132–1138.CrossRefGoogle Scholar
  30. Kenny, M. C., Wilton, A., & Ballard, J. W. O. (2008). Seasonal trade-off between starvation resistance and cold resistance in temperate wild-caught Drosophila simulans. Australian Journal of Entomology, 47, 20–23.CrossRefGoogle Scholar
  31. Kingsolver, J. G., & Huey, R. B. (2008). Size, temperature, and fitness: Three rules. Evolutionary Ecology Research, 10, 251–268.Google Scholar
  32. Krasnov, B., Ward, D., & Shenbrot, G. (1996). Body size and leg length variation in several species of darkling beetles (Coleoptera: Tenebrionidae) along a rainfall and altitudinal gradient in the Negev Desert (Israel). Journal of Arid Environments, 34, 477–489.CrossRefGoogle Scholar
  33. Leroi, A. M., Bennett, A. F., & Lenski, R. E. (1994). Temperature acclimation and competitive fitness: An experimental test of the beneficial acclimation assumption. Proceedings of the National Academy of Sciences of the United States of America, 91, 1917–1921.CrossRefPubMedCentralPubMedGoogle Scholar
  34. MacMillan, H. A., & Sinclair, B. J. (2011). Mechanisms underlying insect chill-coma. Journal of Insect Physiology, 57, 12–20.CrossRefPubMedGoogle Scholar
  35. MacMillan, H. A., Walsh, J. P., & Sinclair, B. J. (2009). The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Science, 16, 263–276.CrossRefGoogle Scholar
  36. MacMillan, H. A., Williams, C. M., Staples, J. F., & Sinclair, B. J. (2012). Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proceedings of the National Academy of Sciences of the United States of America, 109, 20750–20755.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Maysov, A., & Kipyatkov, V. E. (2009). Critical thermal minima, their spatial and temporal variation and response to hardening in Myrmica ants. CryoLetters, 30, 29–40.PubMedGoogle Scholar
  38. Milutinović, B., Stolpe, C., Peuß, R., Armitage, S. A. O., & Kurtz, J. (2013). The red flour beetle as a model for bacterial oral infections. PLoS One, 8, e64638.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Modlmeier, A. P., Foitzik, S., & Scharf, I. (2013). Starvation endurance in the ant Temnothorax nylanderi depends on group size, body size and access to larvae. Physiological Entomology, 38, 89–94.CrossRefGoogle Scholar
  40. Modlmeier, A. P., Pamminger, T., Foitzik, S., & Scharf, I. (2012). Cold resistance depends on acclimation and behavioral caste in a temperate ant. Naturwissenschaften, 99, 811–819.CrossRefPubMedGoogle Scholar
  41. Pijpe, J., Brakefield, P. M., & Zwaan, B. J. (2007). Phenotypic plasticity of starvation resistance in the butterfly Bicyclus anynana. Evolutionary Ecology, 21, 589–600.CrossRefGoogle Scholar
  42. Ransberry, V. E., MacMillan, H. A., & Sinclair, B. J. (2011). The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster. Physiological and Biochemical Zoology, 84, 553–559.CrossRefPubMedGoogle Scholar
  43. Relyea, R. A., & Auld, J. R. (2004). Having the guts to compete: How intestinal plasticity explains costs of inducible defences. Ecology Letters, 7, 869–875.CrossRefGoogle Scholar
  44. Renault, D., Salin, C., Vannier, G., & Vernon, P. (2002). Survival at low temperatures in insects: What is the ecological significance of the supercooling point? CryoLetters, 23, 217–228.PubMedGoogle Scholar
  45. Rion, S., & Kawecki, T. J. (2007). Evolutionary biology of starvation resistance: What we have learned from Drosophila. Journal of Evolutionary Biology, 20, 1655–1664.CrossRefPubMedGoogle Scholar
  46. Robinson, S. J. W., Zwaan, B., & Partridge, L. (2000). Starvation resistance and adult body composition in a latitudinal cline of Drosophila melanogaster. Evolution, 54, 1819–1824.CrossRefPubMedGoogle Scholar
  47. Santos, M. (2007). Evolution of total net fitness in thermal lines: Drosophila subobscura likes it “warm”. Journal of Evolutionary Biology, 20, 2361–2370.CrossRefPubMedGoogle Scholar
  48. Scharf, I., Filin, I., Ben-Yehoshua, D., & Ovadia, O. (2009). Phenotypic plasticity and variation in morphological and life-history traits of antlion adults across a climatic gradient. Zoology, 112, 139–150.CrossRefPubMedGoogle Scholar
  49. Scharf, I., Sbilordo, S. H., & Martin, O. Y. (2014). Cold tolerance in flour beetle species differing in body size and selection temperature. Physiol Entomol, 39, 80–87.CrossRefGoogle Scholar
  50. Sejerkilde, M., Sørensen, J. G., & Loeschcke, V. (2003). Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. Journal of Insect Physiology, 49, 719–726.CrossRefPubMedGoogle Scholar
  51. Sokoloff, A. (1974). The Biology of Tribolium (Vol. 2). Oxford: Oxford University Press.Google Scholar
  52. Teets, N. M., & Denlinger, D. L. (2013). Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiological Entomology, 38, 105–116.CrossRefGoogle Scholar
  53. Terblanche, J. S., & Chown, S. L. (2006). The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). Journal of Experimental Biology, 209, 1064–1073.CrossRefPubMedCentralPubMedGoogle Scholar
  54. Van Buskirk, J. (2002). A comparative test of the adaptive plasticity hypothesis: Relationships between habitat and phenotype in Anuran larvae. The American Naturalist, 160, 87–102.CrossRefPubMedGoogle Scholar
  55. Van Dijk, P. L. M., Staaks, G., & Hardewig, I. (2002). The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus. Oecologia, 130, 496–504.CrossRefGoogle Scholar
  56. Wang, T., Hung, C. C. Y., & Randall, D. J. (2006). The comparative physiology of food deprivation: From feast to famine. Annual Review of Physiology, 68, 223–251.CrossRefPubMedGoogle Scholar
  57. Wilson, R. S., & Franklin, C. E. (2002). Testing the beneficial acclimation hypothesis. Trends in Ecology & Evolution, 17, 66–70.CrossRefGoogle Scholar
  58. Woods, H. A., & Harrison, J. F. (2001). The beneficial acclimation hypothesis versus acclimation of specific traits: Physiological change in water-stressed Manduca sexta caterpillars. Physiological and Biochemical Zoology, 74, 32–44.CrossRefPubMedGoogle Scholar
  59. Woods, H. A., & Harrison, J. F. (2002). Interpreting rejections of the beneficial acclimation hypothesis: When is physiological plasticity adaptive? Evolution, 56, 1863–1866.CrossRefPubMedGoogle Scholar
  60. Young, A. M. (1970). Predation and abundance in populations of flour beetles. Ecology, 51, 602–619.CrossRefGoogle Scholar
  61. Zamudio, K. R., Huey, R. B., & Crill, W. D. (1995). Bigger isn’t always better: Body-size, developmental and parental temperature and male territorial success in Drosophila melanogaster. Animal Behaviour, 49, 671–677.CrossRefGoogle Scholar
  62. Zehnder, C. B., Parris, M. A., & Hunter, M. D. (2007). Effects of maternal age and environment on offspring vital rates in the Oleander Aphid (Hemiptera: Aphididae). Environmental Entomology, 36, 910–917.CrossRefPubMedGoogle Scholar
  63. Zeilstra, I., & Fischer, K. (2005). Cold tolerance in relation to developmental and adult temperature in a butterfly. Physiological Entomology, 30, 92–95.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Zoology, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations