Evolutionary Biology

, Volume 41, Issue 3, pp 459–472 | Cite as

Host-Size-Matching in a Sperm-Dependent Asexual Fish

Research Article


Among vertebrates, there are approximately fifty sperm-dependent asexual species, all of which are of hybrid origin. Sperm-dependent asexual vertebrates use sperm from one, or both, of their parental species for reproduction. To address the hypothesis that selection has resulted in asexual phenotypes that resemble their host’s phenotype, I studied size, shape, and genetic variation (using six microsatellite loci) in nine populations of a sperm-dependent asexual fish, Chrosomus eos-neogaeus, in Alberta, Canada. These nine populations differed in the presence or absence of each of the two parental species: three populations coexist with C. eos, two populations coexist with C. neogaeus, and four populations coexist with both parental species. Consistent with my hypothesis, I found that C. eos-neogaeus tended to match the body size of the parental species with which they coexist, and that C. eos-neogaeus that coexist with only C. eos were genetically divergent from C. eos-neogaeus that are syntopic with only C. neogaeus. The genetic divergence among C. eos-neogaeus populations was independent of geographic distance among populations, and estimates of quantitative trait divergence among C. eos-neogaeus populations exceeded neutral expectations. These observations suggest that processes other than migration, mutation, and drift are likely shaping the diversity of C. eos-neogaeus in the lakes sampled for this study. For example, sexual selection leading to host mimicry, or natural selection leading to environmental adaptation, may explain the observed pattern of host-size matching.


Adaptation Coexistence Gynogenesis Host mimicry hypothesis Hybrid species Maintenance of sex Phoxinus sp. Sexual selection 


  1. Abt, G., & Reyer, H. U. (1993). Mate choice and fitness in a hybrid frog—Rana esculenta females prefer Rana lessonae males over their own. Behavioral Ecology and Sociobiology, 32(4), 221–228.CrossRefGoogle Scholar
  2. Angers, B., & Schlosser, I. J. (2007). The origin of Phoxinus eos-neogaeus unisexual hybrids. Molecular Ecology, 16(21), 4562–4571.PubMedCrossRefGoogle Scholar
  3. Avise, J. C. (2008). Clonality: The genetics, ecology, and evolution of sexual abstinence in vertebrates. Oxford: Oxford University Press.CrossRefGoogle Scholar
  4. Baldauf, S. A., Kullmann, H., Schrothm S. H., Thunken, T., & Bakker, T. C. M. (2009). You can’t always get what you want: Size assortative mating by mutual mate choice as a resolution of sexual conflict. BMC Evolutionary Biology, 9, 129.Google Scholar
  5. Baube, C. L. (2008). Body size and the maintenance of reproductive isolation in stickleback, genus Gasterosteus. Ethology, 114(11), 1122–1134.CrossRefGoogle Scholar
  6. Beukeboom, L. W., & Vrijenhoek, R. C. (1998). Evolutionary genetics and ecology of sperm-dependent parthenogenesis. Journal of Evolutionary Biology, 11(6), 755–782.CrossRefGoogle Scholar
  7. Binet, M. C., & Angers, B. (2005). Genetic identification of members of the Phoxinus eos-neogaeus hybrid complex. Journal of Fish Biology, 67(4), 1169–1177.CrossRefGoogle Scholar
  8. Bobyrev, A., Burmensky, V., Vasil’Ev, V., Kriksunov, E., & Lebedeva, E. (2003). Coexistence of triploid and diploid forms of spined loach, Cobitis taenia: A model-based approach. Folia Biologica-Krakow, 51, 55–60.Google Scholar
  9. Bowcock, A. M., Ruizlinares, A., Tomfohrde, J., Minch, E., Kidd, J. R., & Cavalli-Sforza, L. L. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature, 368(6470), 455–457.PubMedCrossRefGoogle Scholar
  10. Brown, K. M., Baltazar, G. A., & Hamilton, M. B. (2005). Reconciling nuclear microsatellite and mitochondrial marker estimates of population structure: Breeding population structure of Chesapeake Bay striped bass (Morone saxatilis). Heredity, 94(6), 606–615.PubMedCrossRefGoogle Scholar
  11. Choleva, L., Apostolou, A., Rab, P., & Janko, K. (2008). Making it on their own: Sperm-dependent hybrid fishes (Cobitis) switch the sexual hosts and expand beyond the ranges of their original sperm donors. Philosophical Transactions of the Royal Society B-Biological Sciences, 363(1505), 2911–2919.PubMedCentralCrossRefGoogle Scholar
  12. Cochran, P. A., Lodge, D. M., Hodgson, J. R., & Knapik, P. G. (1988). Diets of syntopic finescale cace, Phoxinus neogaeus, and northern redbelly dace, Phoxinus eos: A reflection of trophic morphology. Environmental Biology of Fishes, 22(3), 235–240.CrossRefGoogle Scholar
  13. Dawley, R. M., & Bogart, J. P. (1989). Evolution and ecology of unisexual vertebrates (p. 302). Albany, New York: New York State Education Department.Google Scholar
  14. Doeringsfeld, M. R., Schlosser, I. J., Elder, J. F., & Evenson, D. P. (2004). Phenotypic consequences of genetic variation in a gynogenetic complex of Phoxinus eos-neogaeus clonal fish (Pisces: Cyprinidae) inhabiting a heterogeneous environment. Evolution, 58(6), 1261–1273.PubMedCrossRefGoogle Scholar
  15. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman and Hall.CrossRefGoogle Scholar
  16. Engeler, B., & Reyer, H. U. (2001). Choosy females and indiscriminate males: Mate choice in mixed populations of sexual and hybridogenetic water frogs (Rana lessonae, Rana esculenta). Behavioral Ecology, 12(5), 600–606.CrossRefGoogle Scholar
  17. Foote, C. J. (1988). Male mate choice dependent on male size in salmon. Behaviour, 106, 63–80.CrossRefGoogle Scholar
  18. Foote, C. J., & Larkin, P. A. (1988). The role of male choice in the assortative mating of anadromous and non-anadromous sockeye salmon (Oncorhynchus nerka). Behaviour, 106, 43–62.CrossRefGoogle Scholar
  19. Gabor, C. R., Gonzalez, R., Parmley, M., & Aspbury, A. S. (2010). Variation in male sailfin molly, preference for female size: does sympatry with sexual parasites, drive preference for smaller conspecifics? Behavioral Ecology and Sociobiology, 64(5), 783–792.CrossRefGoogle Scholar
  20. Girard, P., & Angers, B. (2006). Characterization of microsatellite loci in longnose dace (Rhinichthys cataractae) and interspecific amplification in five other Leuciscinae species. Molecular Ecology Notes, 6(1), 69–71.CrossRefGoogle Scholar
  21. Goddard, K. A., Dawley, R. M., & Dowling, T. E. (1989). Origin and genetic relationships of diploid, triploid, and diploid-triploid mosaic biotypes in the Phoxinus eos-neogaeus unisexual complex. In R. M. Dawley & J. P. Bogart (Eds.), Evolution and ecology of unisexual vertebrates (pp. 269–280). Albany, New York: New Yory State Education Department.Google Scholar
  22. Goddard, K. A., Megwinoff, O., Wessner, L. L., & Giaimo, F. (1998). Confirmation of gynogenesis in Phoxinus eos-neogaeus (Pisces: Cyprinidae). Journal of Heredity, 89(2), 151–157.CrossRefGoogle Scholar
  23. Goddard, K. A., & Schultz, R. J. (1993). Aclonal reproduction by polyploid members of the clonal hybrid species Phoxinus eos-neogaeus (Cyprinidae). Copeia, 1993(3), 650–660.CrossRefGoogle Scholar
  24. Goldstein, D. B., Ruíz-Linares, A., Feldman, M., & Cavalli-Sforza, L. L. (1995). An evaluation of genetic distances for use with microsatellite loci. Genetics, 139, 463–471.PubMedCentralPubMedGoogle Scholar
  25. Goodman, S. J. (1997). R-ST Calc: A collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Molecular Ecology, 6(9), 881–885.CrossRefGoogle Scholar
  26. Gumm, J. M., & Gabor, C. R. (2005). Asexuals looking for sex: Conflict between species and mate-quality recognition in sailfin mollies (Poecilia latipinna). Behavioral Ecology and Sociobiology, 58(6), 558–565.CrossRefGoogle Scholar
  27. Hatfield, T., & Schluter, D. (1996). A test for sexual selection on hybrids of two sympatric sticklebacks. Evolution, 50(6), 2429–2434.CrossRefGoogle Scholar
  28. Hellriegel, B., & Reyer, H. U. (2000). Factors influencing the composition of mixed populations of a hemiclonal hybrid and its sexual host. Journal of Evolutionary Biology, 13(6), 906–918.CrossRefGoogle Scholar
  29. Heubel, K. U., Rankin, D. J., & Kokko, H. (2009). How to go extinct by mating too much: Population consequences of male mate choice and efficiency in a sexual–asexual species complex. Oikos, 118(4), 513–520.CrossRefGoogle Scholar
  30. Jennions, M. D., Moller, A. P., & Petrie, M. (2001). Sexually selected traits and adult survival: A meta-analysis. Quarterly Review of Biology, 76(1), 3–36.PubMedCrossRefGoogle Scholar
  31. Lande, R. (1992). Neutral theory of quantitative genetic variance in an island model with local extinction and colonization. Evolution, 46(2), 381–389.CrossRefGoogle Scholar
  32. Langerhans, R. B., Gifford, M. E., & Joseph, E. O. (2007). Ecological speciation in Gambusia fishes. Evolution, 61(9), 2056–2074.PubMedCrossRefGoogle Scholar
  33. Lima, N. R. W., Kobak, C. J., & Vrijenhoek, R. C. (1996). Evolution of sexual mimicry in sperm-dependent all-female forms of Poeciliopsis (Pisces: Poeciliidae). Journal of Evolutionary Biology, 9(2), 185–203.CrossRefGoogle Scholar
  34. Lively, C. M. (1996). Host-parasite coevolution and sex. BioScience, 46(2), 107–114.CrossRefGoogle Scholar
  35. Lively, C. M., Craddock, C., & Vrijenhoek, R. C. (1990). Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature, 344(6269), 864–866.CrossRefGoogle Scholar
  36. Maekawa, K., Nakano, S., & Yamamoto, S. (1994). Spawning behavior and size-assortative mating of Japanese charr in an artificial lake-inlet stream system. Environmental Biology of Fishes, 39(2), 109–117.CrossRefGoogle Scholar
  37. Maynard, Smith J. (1978). The evolution of sex (p. 222). Cambridge: Cambridge University Press.Google Scholar
  38. McKay, F. E. (1971). Behavioral aspects of population dynamics in unisexual–bisexual Poeciliopsis (Pisces: Poeciliidae). Ecology, 52(5), 778–790.CrossRefGoogle Scholar
  39. McLean, J. E., Bentzen, P., & Quinn, T. P. (2005). Nonrandom, size- and timing-biased breeding in a hatchery population of steelhead trout. Conservation Biology, 19(2), 446–454.CrossRefGoogle Scholar
  40. Mee, J. A., Brauner, C. J., & Taylor, E. B. (2011). Repeat swimming performance and its implications for inferring the relative fitness of asexual hybrid dace (Pisces: Phoxinus) and their sexually reproducing parental species. Physiological and Biochemical Zoology, 84(3), 306–315.PubMedCrossRefGoogle Scholar
  41. Mee, J., Chan, C., & Taylor, E. (2013a). Coexistence of sperm-dependent asexuals and their sexual hosts: The role of differences in fitness-related traits. Environmental Biology of Fishes, 96(9), 1111–1121.CrossRefGoogle Scholar
  42. Mee, J. A., Noddin, F., Hanisch, J. R., Tonn, W. M., & Paszkowski, C. A. (2013b). Diets of sexual and sperm-dependent asexual dace (Chrosomus spp.): Relevance to niche differentiation and mate choice hypotheses for coexistence. Oikos, 122, 988–1008.CrossRefGoogle Scholar
  43. Mee, J. A., & Otto, S. P. (2010). Variation in the strength of male mate choice allows long-term coexistence of sperm-dependent asexuals and their sexual hosts. Evolution, 64(10), 2808–2819.PubMedGoogle Scholar
  44. Mee, J. A., & Rowe, L. (2006). A comparison of parasite loads on asexual and sexual Phoxinus (Pisces: Cyprinidae). Canadian Journal of Zoology, 84(6), 808–816.CrossRefGoogle Scholar
  45. Mee, J. A., & Taylor, E. B. (2012). The cybrid invasion: Widespread postglacial dispersal by Phoxinus (Pisces: Cyprinidae) cytoplasmic hybrids. Canadian Journal of Zoology, 90(5), 577–584.CrossRefGoogle Scholar
  46. Moore, W. S. (1976). Components of fitness in a unisexual fish Poeciliopsis monacha-occidentalis. Evolution, 30(3), 564–578.CrossRefGoogle Scholar
  47. Moore, W. S., & McKay, F. E. (1971). Coexistence in unisexual species complexes of Poeciliopsis (Pisces-Poeciliidae). Ecology, 52(5), 791–799.CrossRefGoogle Scholar
  48. Moran, P. A. P. (1975). Wandering distributions and the electrophoretic profile. Theoretical Population Biology, 8, 318–330.PubMedCrossRefGoogle Scholar
  49. Neaves, W. B., & Baumann, P. (2011). Unisexual reproduction among vertebrates. Trends in Genetics, 27(3), 81–88.PubMedCrossRefGoogle Scholar
  50. New, J. G. (1962). Hybridization between two cyprinids. Chrosomus eos and Chrosomus neogaeus. Copeia, 1962(1), 147–152.Google Scholar
  51. Poschadel, J. R., Plath, M., & Schlupp, I. (2009). Divergent female mating preference in a clonal fish. Acta Ethologica, 12(1), 55–60.CrossRefGoogle Scholar
  52. R Development Core Team. (2010). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  53. Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145(4), 1219–1228.PubMedCentralPubMedGoogle Scholar
  54. Schley, D., Doncaster, C. P., & Sluckin, T. (2004). Population models of sperm-dependent parthenogenesis. Journal of Theoretical Biology, 229(4), 559–572.PubMedCrossRefGoogle Scholar
  55. Schlosser, I. J., Doeringsfeld, M. R., Elder, J. F., & Arzayus, L. F. (1998). Niche relationships of clonal and sexual fish in a heterogeneous landscape. Ecology, 79(3), 953–968.CrossRefGoogle Scholar
  56. Schlupp, I. (2009). Behavior of fishes in the sexual/unisexual mating system of the amazon molly (Poecilia formosa). In H. J. Brockman, T. J. Roper, M. Naguib, K. E. Wynne-Edwards, J. C. Mitani, & L. W. Simmons (Eds.), Advances in the study of behavior (pp. 153–159). Burlington: Academic Press.Google Scholar
  57. Schlupp, I., & Riesch, R. (2011). Evolution of unisexual reproduction. In J. P. Evans, A. Pilastro, & I. Schlupp (Eds.), Ecology and evolution of Poeciliid Fishes. Chicago: University of Chicago Press.Google Scholar
  58. Schluter, D. (1996). Ecological speciation in postglacial fishes. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 351(1341), 807–814.Google Scholar
  59. Schluter, D., & Nagel, L. M. (1995). Parallel speciation by natural selection. American Naturalist, 146(2), 292–301.CrossRefGoogle Scholar
  60. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.PubMedCrossRefGoogle Scholar
  61. Schön, I., Martens, K., & van Dijk, P. (Eds.). (2009). Lost sex: The evolutionary biology of parthenogenesis. Dordrecht: Springer.Google Scholar
  62. Schultz, R. J. (1969). Hybridization, unisexuality and polyploidy in teleost Peociliopsis (Poeciliidae) and other vertebrates. American Naturalist, 103, 605–619.CrossRefGoogle Scholar
  63. Scott, W. B., & Crossman, E. J. (1979). Freshwater fishes of Canada. Bulletin of the Fisheries Research Board of Canada No. 184.Google Scholar
  64. Slatkin, M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139(1), 457–462.PubMedCentralPubMedGoogle Scholar
  65. Sokal, R. R., & Rohlf, F. J. (1995). Biometry. New York: W. H. Freeman and Co.Google Scholar
  66. Spitze, K. (1993). Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics, 135(2), 367–374.PubMedCentralPubMedGoogle Scholar
  67. Thunken, T., Baldauf, S. A., Kullmann, H., Schuld, J., Hesse, S., & Bakker, T. C. M. (2011). Size-related inbreeding preference and competitiveness in male Pelvicachromis taeniatus (Cichlidae). Behavioral Ecology, 22(2), 358–362.CrossRefGoogle Scholar
  68. Tunner, H. G. (2000). Evidence for genomic imprinting in unisexual triploid hybrid frogs. Amphibia-Reptilia, 21(2), 135–141.CrossRefGoogle Scholar
  69. Vorburger, C. (2001). Fixation of deleterious mutations in clonal lineages: Evidence from hybridogenetic frogs. Evolution, 55(11), 2319–2332.PubMedCrossRefGoogle Scholar
  70. Vrijenhoek, R. C. (1978). Coexistence of clones in a heterogeneous environment. Science, 199(4328), 549–552.PubMedCrossRefGoogle Scholar
  71. Vrijenhoek, R. C. (1984). Ecological differentiation among clones: The frozen niche variation model. In K. Wohrmann & V. Loeschcke (Eds.), Population biology and evolution (pp. 217–231). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  72. Vrijenhoek, R. C. (1994). Unisexual fish: Model systems for studying ecology and evolution. Annual Review of Ecology and Systematics, 25, 71–96.CrossRefGoogle Scholar
  73. Vrijenhoek, R. C., & Schultz, R. J. (1974). Evolution of a trihybrid unsexual fish (Poeciliopsis, Poeciliidae). Evolution, 28, 306–319.CrossRefGoogle Scholar
  74. Weeks, S. C. (1995). Comparisons of life-history traits between clonal and sexual fish (Poeciliopsis, Poeciliidae) raised in monoculture and mixed treatments. Evolutionary Ecology, 9(3), 258–274.CrossRefGoogle Scholar
  75. Wetherington, J. D., Kotora, K. E., & Vrijenhoek, R. C. (1987). A test of the spontaneous heterosis hypothesis for unisexual vertebrates. Evolution, 41(4), 721–731.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Zoology, Biodiversity Research CentreUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations