Evolutionary Biology

, Volume 41, Issue 3, pp 439–451 | Cite as

Peripheral Isolate Speciation of a Lake Malawi Cichlid Fish from Shallow Muddy Habitats

  • Alexandra M. Tyers
  • David Bavin
  • Gavan M. Cooke
  • Catherine Griggs
  • George F. Turner
Research Article


Much of the exceptional diversity of cichlid fishes in the African Great Lakes can be explained by geographic variation among isolated populations of species specialised to live on patchily distributed rocky habitat. However, there are also many endemic species that are not specialised for rocky shores. These appear to experience weaker geographic isolation. Major decreases in lake volume may have segregated such populations in isolated refugia in the distant past, but subsequent range changes have likely eliminated most of the phylogeographic signal of these events. Divergence in currently isolated peripheral water bodies may be more amenable to the study of recent processes of allopatric divergence. We investigate a haplochromine cichlid fish, here referred to as Lethrinops sp. ‘chilingali’, isolated in a small satellite lake near Lake Malawi, and the candidate sister taxon, Lethrinops lethrinus, which inhabits shallow muddy habitats in the main lake and associated water bodies. The satellite lake form from Lake Chilingali showed significant morphological differentiation, with a less ventrally-placed mouth and shorter snout, associated with a shift in diet from a diverse range of benthic invertebrates towards specialisation on mid-water chaoborid larvae and pupae. The Lake Chilingali population showed substantially reduced mitochondrial DNA diversity and no haplotype sharing was observed with populations from the main lake system. In laboratory experiments, putative species showed a high degree of assortative mating and territorial males were significantly more aggressive towards intruders of their own population. This study adds to the evidence that rapid evolution of novel phenotypes in peripheral habitats can add to the diversity of lacustrine cichlids through the evolution of at least partial reproductive isolation in allopatry.


Aggression Allopatric Cichlid Lake Malawi Mate choice Peripheral isolate Speciation 



We thank Holly-May Watson for setting up and recording male aggression experiments, Britta Meyer and Hazel Perry for their advice on haplotype networks, and the Fisheries Department of the Government of Malawi for permission and help with fieldwork logistics. We also thank Mike Pauers, Domino Joyce, Wolfgang Wüster and three anonymous referees for their comments. The field trip was supported by a Zoological Society of London grant to GMC.


  1. Aguilee, R., Claessen, D., & Lambert, A. (2013). Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics. Evolution, 67(5), 1291–1306.PubMedGoogle Scholar
  2. Aljanabi, S. M., & Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25(22), 4692–4693.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Anseeuw, D., Maes, G. E., Busselen, P., Knapen, D., Snoeks, J., & Verheyen, E. (2008). Subtle population structure and male-biased dispersal in two Copadichromis species (Teleostei, Cichlidae) from Lake Malawi, East Africa. Hydrobiologia, 615(1), 69–79.CrossRefGoogle Scholar
  4. Barraclough, T. G., & Vogler, A. P. (2000). Detecting the geographical pattern of speciation from species-level phylogenies. The American Naturalist, 155(4), 319–434.CrossRefGoogle Scholar
  5. Blais, J., Plenderleith, M., Rico, C., Taylor, M. I., Seehausen, O., van Oosterhout, C., et al. (2009). Assortative mating among Lake Malawi cichlid fish populations is not simply predictable from male nuptial colour. BMC Evolutionary Biology, 9, 53.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Brooks, J. L. (1950). Speciation in ancient lakes (concluded). Quarterly Review of Biology, 25(2), 131–176.PubMedCrossRefGoogle Scholar
  7. Carvajal-Rodríguez, A., & Rodríguez, M. G. (2005). Morphometric and distance computation software oriented for evolutionary studies. Online Journal of Bioinformatics, 6, 34–41.Google Scholar
  8. Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates Inc.Google Scholar
  9. Darwall, W. R. T. (2003). Spatial patterns and trophic modelling with the Lake Malawi demersal fish community: conservation and fisheries applications. Ph.D. thesis, University of Hull.Google Scholar
  10. Dawson, M. N., & Hamner, W. M. (2005). Rapid evolutionary radiation of marine zooplankton in peripheral environments. Proceedings of the National Academy of Science, 102(26), 9235–9240.CrossRefGoogle Scholar
  11. Dawson, M. N., & Hamner, W. M. (2008). A biophysical perspective on dispersal and the geography of evolution in marine and terrestrial systems. Journal of the Royal Society, Interface, 5(19), 135–150.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Dijkstra, P. D., Hemelrijk, C. K., Seehausen, O., & Groothuis, T. G. G. (2009). Colour polymorphism and intrasexual selection in assemblages of cichlid fish. Behavioural Ecology, 20(1), 138–144.CrossRefGoogle Scholar
  13. Dixey, F. (1927). The tertiary and post-tertiary lacustrine sediments of the Nyasan Rift-valley. Quarterly Journal of the Geological Society, 83, 432–442.CrossRefGoogle Scholar
  14. Dodd, D. M. B. (1989). Reproductive isolation as a consequence of adaptive divergence in Drosophila pseudoobscura. Evolution, 43(6), 1308–1311.CrossRefGoogle Scholar
  15. Doebeli, M., & Dieckmann, U. (2003). Speciation along environmental gradients. Nature, 421, 259–264.PubMedCrossRefGoogle Scholar
  16. Eccles, D. H., & Lewis, D. S. C. (1978). A taxonomic study of the genus Lethrinops Regan (Pisces: Cichlidae) from Lake Malawi: Part 2. Ichthyological Bulletin of the J.L.B. Smith Institute of Ichthyology, 37, 11.Google Scholar
  17. Eccles, D. H., & Trewavas, E. (1989). Malawian cichlid fishes: A classification of some Haplochromine Genera. Herten: Lake Fish Movies.Google Scholar
  18. Egger, B., Mattersdorfer, K., & Sefc, K. M. (2010). Variable discrimination and asymmetric preferences in laboratory tests of reproductive isolation between cichlid colour morphs. Journal of Evolutionary Biology, 23(2), 433–439.PubMedCrossRefGoogle Scholar
  19. Egger, B., Obermller, B., Eigner, E., Sturmbauer, C., & Sefc, K. M. (2008). Assortative mating preferences between colour morphs of the endemic Lake Tanganyika cichlid genus Tropheus. Hydrobiologia, 615(1), 37–48.CrossRefGoogle Scholar
  20. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.PubMedCentralGoogle Scholar
  21. Funk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Science USA, 103(9), 3209–3213.CrossRefGoogle Scholar
  22. Genner, M. J., Nichols, P., Carvalho, G. R., Robinson, R. L., Shaw, P. W., Smith, A., et al. (2007). Evolution of a cichlid fish in a Lake Malawi satellite lake. Proceedings of the Royal Society B, 274(1623), 2249–2257.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Genner, M. J., Nichols, P., Shaw, P. W., Carvalho, G. R., Robinson, R. L., & Turner, G. F. (2008a). Genetic homogeneity among breeding grounds and nursery areas of an exploited Lake Malawi cichlid fish. Freshwater Biology, 53(9), 1823–1831.CrossRefGoogle Scholar
  24. Genner, M. J., Taylor, M. I., Cleary, D. F. R., Hawkins, S. J., Knight, M. E., & Turner, G. F. (2004). Beta diversity of rock-restricted cichlid fishes in Lake Malawi: Importance of environmental and spatial factors. Ecography, 27, 601–610.CrossRefGoogle Scholar
  25. Genner, M. J., & Turner, G. F. (2005). The Mbuna cichlids of Lake Malawi: A model for rapid speciation and adaptive radiation. Fish and Fisheries, 6(1), 1–34.CrossRefGoogle Scholar
  26. Genner, M. J., & Turner, G. F. (2012). Ancient hybridization and phenotypic novelty in Lake Malawi cichlid fish radiation. Molecular Biology and Evolution, 29(1), 195–206.PubMedCrossRefGoogle Scholar
  27. Genner, M. J., Young, K. A., Haesler, M. P., & Joyce, D. A. (2008b). Indirect mate choice, direct mate choice and species recognition in a bower-building cichlid fish lek. Journal of Evolutionary Biology, 21(2008), 1387–1396.PubMedCrossRefGoogle Scholar
  28. Greenwood, P. H. (1965). The cichlid fishes of Lake Nabugabo, Uganda. Bulletin of the British Museum (Natural History), Zoology, 12, 315–357.Google Scholar
  29. Joyce, D. A., Lunt, D. H., Bills, R., Turner, G. F., Katongo, C., Duftner, N., et al. (2005). An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature, 435, 905.CrossRefGoogle Scholar
  30. Joyce, D. A., Lunt, D. H., Genner, M. J., Turner, G. F., Bills, R., & Seehausen, O. (2011). Repeated colonization and hybridization in Lake Malawi cichlids. Current Biology, 21(3), R108–R109.PubMedCrossRefGoogle Scholar
  31. Knight, M. E., & Turner, G. F. (2004). Laboratory mating trials indicate incipient speciation by sexual selection among populations of the cichlid fish Pseudotropheus zebra from Lake Malawi. Proceedings of the Royal Society of London B, 271(1540), 675–680.CrossRefGoogle Scholar
  32. Konings, A. (2007). Malawi cichlids in their natural habitat (4th ed.). El Paso, TX: Cichlid Press.Google Scholar
  33. Librado, P., & Rozas, J. (2009). DnaSP v5: A sortware for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452.PubMedCrossRefGoogle Scholar
  34. Loh, Y. H. E., Katz, L. S., Mims, M. C., Kocher, T. D., Yi, S. V. & Streelman J. T. (2008). Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids. Genome Biology, 9, R113.Google Scholar
  35. Magalhaes, I. S., Croft, G. E., & Joyce, D. A. (2013). Altering an extended phenotype reduces intraspecific male aggression and can maintain diversity in cichlid fish. PeerJ, 1, e209. doi: 10.7717/peerj.209.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Belknap Press.CrossRefGoogle Scholar
  37. McKinnon, J. S., & Rundel, H. D. (2002). Speciation in nature: the threespine stickleback model systems. Trends in Ecology & Evolution, 17(10), 480–488.CrossRefGoogle Scholar
  38. Mikami, O. K., Kohda, M., & Kawata, M. (2004). A new hypothesis for species coexistence: Male–male repulsion promotes co-existence of competing species. Population Ecology, 46(2), 213–217.CrossRefGoogle Scholar
  39. Ngatunga, B. P. (2000). A taxonomic revision of the shallow-water species of the genera Lethrinops, Tramitichromis and Taeniolethrinops (Teleostei, Cichlidae) from Lake Malawi/Nyasa/Niassa (East Africa). Ph.D. thesis, Rhodes University, South Africa.Google Scholar
  40. Odhiambo, E. A., Kerschbaumer, M., Postl, L., & Sturmbauer, C. (2011). Morphometric differentiation among haplochromine cichlid fish species of a satellite lake of Lake Victoria. Journal of Zoological Systematics and Evolutionary Research, 49(3), 216–223.CrossRefGoogle Scholar
  41. Odhiambo, E. A., Mautner, S. I., Bock, O., & Sturmbauer, C. (2012). Genetic distinction of four haplochromine cichlid fish species in a satellite lake of Lake Victoria, East Africa. Journal of Zoological Systematics and Evolutionary Research, 51(1), 51–58.CrossRefGoogle Scholar
  42. Okamoto, K. W., & Grether, G. F. (2013). The evolution of species recognition in competitive and mating contexts: The relative efficacy of alternative mechanisms of character displacement. Ecology Letters, 16(5), 670–678.PubMedCrossRefGoogle Scholar
  43. Pauers, M. J., Ehlinger, T. J., & McKinnon, J. S. (2010). Female and male visually based mate preferences are consistent with reproductive isolation between populations of the Lake Malawi endemic Labeotropheus fulleborni. Current Zoology, 56(1), 65–72.Google Scholar
  44. Pereyra, R., Taylor, M. I., Turner, G. F., & Rico, C. (2004). Variation in habitat preference and population structure among three species of the Lake Malawi cichlid genus Protomelas. Molecular Ecology, 13(9), 2691–2697.PubMedCrossRefGoogle Scholar
  45. Ribbink, A. J., Marsh, B. A., Marsh, A. C., Ribbink, A. C., & Sharp, B. J. (1983). A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. South African Journal of Zoology, 18(3), 149–310.Google Scholar
  46. Rice, W. R., & Hostert, E. E. (1993). Laboratory experiments on speciation: What have we learned in 40 years? Evolution, 47(6), 1637–1653.CrossRefGoogle Scholar
  47. Rohlf, F. J. (2001). TPS DIG 1.37. Stony Brook, NY: Department of Ecology and Evolution, State University of New York.Google Scholar
  48. Rohlf, F. J. (2003). TPS Relative warps 1.31. Stony Brook, NY: Department of Ecology and Evolution, State University of New York.Google Scholar
  49. Rohlf, F. J. (2004). tpsUtil. Stony Brook, NY: Department of Ecology and Evolution, State University of New York.Google Scholar
  50. Rohlf, F., & Slice, D. (1990). Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39(1), 40–59.Google Scholar
  51. Seehausen, O. (1997). Distribution of and reproductive isolation among color morphs of a rock-dwelling Lake Victoria cichlid (Haplochromis nyererei). Ecology of Freshwater Fish, 6(1), 59–66.CrossRefGoogle Scholar
  52. Seehausen, O., & Schluter, D. (2004). Male–male competition and nuptial-colour displacement as a diversifying force in Lake Victoria cichlid fishes. Proceedings of the Royal Society of London B, 271(1546), 1345–1353.CrossRefGoogle Scholar
  53. Seehausen, O., & van Alphen, J. J. M. (1999). Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria? Ecology Letters, 2(4), 262–271.CrossRefGoogle Scholar
  54. Shaw, P. W., Turner, G. F., Idid, M. R., Robinson, R. L., & Carvalho, G. R. (2000). Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids. Proceedings of the Royal Society of London B, 267(1459), 2273–2280.CrossRefGoogle Scholar
  55. Stager, J. C., Westwood, T. J., Grzesik, D., & Cumming, B. F. (2005). A 5500-year environmental history of Lake Nabugabo, Uganda. Palaeogeography, Palaeoclimatology, Palaeoecology, 218(3–4), 347–354.CrossRefGoogle Scholar
  56. Stuart, Y. E., Losos, J. B., & Algar, A. C. (2012). The island-mainland species turnover relationship. Proceedings of the Royal Society of London B, 279(1744), 4071–4077.CrossRefGoogle Scholar
  57. Sturmbauer, C., Baric, S., Salzburger, W., Rüber, L., & Verheyen, E. (2001). Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Molecular Biology and Evolution, 18(2), 144–154.PubMedCrossRefGoogle Scholar
  58. Taylor, M. I., Meardon, F., Turner, G., Seehausen, O., Mrosso, H. D. J., & Rico, C. (2002). Characterization of tetranucleotide microsatellite loci in a Lake Victorian, haplochromine cichlid fish: A Pundamilia pundamilia x Pundamilia nyererei hybrid. Molecular Ecology Notes, 2(4), 443–445.CrossRefGoogle Scholar
  59. Taylor, M. I., & Verheyen, E. (2001). Microsatellite data reveals weak population substructuring in Copadichromis sp. virginalis kajose a demersal cichlid from Lake Malawi, Africa. Journal of Fish Biology, 59(3), 593–604.Google Scholar
  60. Trewavas, E. (1933). Scientific results of the Cambridge Expedition to the East African Lakes, 1930–1. 11. The cichlid fishes. Journal of the Linnean Society of London, (Zoology), 38(259), 309–341.CrossRefGoogle Scholar
  61. Turner, G. F. (1996). Offshore cichlids of Lake Malawi. Lauenau: Cichlid Press.Google Scholar
  62. Turner, G. F., Robinson, R. L., Shaw, P. W., & Carvalho, G. R. (2004). Identification and biology of Diplotaxodon, Rhamphochromis and Pallidochromis. In J. Snoeks (Ed.), The cichlid diversity of Lake Malawi/Nyasa: Identification, distribution and taxonomy (pp. 198–251). El Paso, TX: Cichlid Press.Google Scholar
  63. Turner, G. F., Seehausen, O., Knight, M. E., Allender, C. J., & Robinson, R. L. (2001). How many species of cichlid fishes are there in African Lakes. Molecular Ecology, 10(3), 793–806.PubMedCrossRefGoogle Scholar
  64. Tyers, A. M., & Turner, G. F. (2013). Signal and preference divergence among populations of the non-endemic basal Lake Malawi cichlid fish Astatotilapia calliptera (Perciformes: Cichlidae). Biological Journal of the Linnean Society, 110(1), 180–188.CrossRefGoogle Scholar
  65. van Bocxlaer, B., Salenbien, W., Praet, N., & Verniers, J. (2012). Stratigraphy and paleoenvironments of the early to middle Holocene Chipalamawamba Beds (Malawi Basin, Africa). Biogeoscience Discuss, 9, 5793–5822.CrossRefGoogle Scholar
  66. van Doorn, G. S., Dieckmann, U., & Weissing, F. J. (2004). Sympatric speciation by sexual selection: A critical re-evaluation. The American Naturalist, 163(5), 709–725.PubMedCrossRefGoogle Scholar
  67. Xia, X., & Xie, Z. (2001). DAMBE: Data analysis in molecular biology and evolution. Journal of Heredity, 92(4), 371–373.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexandra M. Tyers
    • 1
  • David Bavin
    • 1
  • Gavan M. Cooke
    • 1
  • Catherine Griggs
    • 1
  • George F. Turner
    • 1
  1. 1.School of Biological SciencesBangor UniversityWalesUK

Personalised recommendations