Evolutionary Biology

, Volume 41, Issue 3, pp 425–438 | Cite as

Allometric Convergence, Acoustic Character Displacement, and Species Recognition in the Syntopic Cricket Frogs Acris crepitans and A. gryllus

  • Jonathan P. MicancinEmail author
  • R. Haven Wiley
Research Article


Evidence for reproductive character displacement (RCD) has accumulated more slowly than for ecological character displacement, perhaps because sampling scales and environmental covariates can obscure the role of RCD in speciation. We examined an early example of RCD in an anuran species group, the vocalizations of the sympatric cricket frogs Acris crepitans and A. gryllus. With a relatively fine spatial scale, we compared mixed-species choruses (syntopy), nearby locations where A. gryllus is recently extirpated (historic sympatry), and surrounding areas without secondary contact (allopatry). In each of these areas, we evaluated variation in dominant frequency, click rate, and mass of males. In addition, we determined the acoustic preferences of syntopic females. Temperature influenced dominant frequency of vocalizations in A. crepitans, but not in A. gryllus. Body size varied more and had a stronger influence on dominant frequency in A. crepitans than in A. gryllus. Consequently, the decrease in mass of A. crepitans in syntopy resulted in convergence of body size and divergence of dominant frequencies of the two species. In contrast, dominant frequency of A. crepitans did not differ between historic sympatry and allopatry. Females of both species used fine temporal structure to discriminate between conspecific and heterospecific vocalizations and showed no preferences for dominant frequency. Chorus noise limited the ability of A. gryllus females to detect and discriminate vocalizations, so convergence in mass might have resulted from RCD in dominant frequency to reduce heterospecific acoustic interference. However, influences other than RCD might have caused syntopic convergence in body size.


Amphibian decline Body size Conservation behavior Reproductive isolation Vocal communication Sympatry 



We thank the NC Division of Parks and Recreation, the NC Wildlife Resources Commission, and the Triangle Land Conservancy for access to field sites, the staff of Merchants Millpond State Park for logistical support, and Charles Helms and Jeff Mette for assistance in the field. We thank Brad Lamphere, Alan Feduccia, Will Mackin, and two anonymous reviewers for comments on the manuscript. Funding was provided by the University of North Carolina, the Center for the Study of the American South, and the North Carolina Herpetological Society. All work was conducted under permits from the NC Department of Parks and Recreation and NC Wildlife Resources Commission and with approval from the University of North Carolina Institutional Animal Care and Use Committee (04-068 and 07-088).

Supplementary material

11692_2014_9274_MOESM1_ESM.pdf (109 kb)
Supplementary material 1 (PDF 108 kb)
11692_2014_9274_MOESM2_ESM.wav (238 kb)
Supplementary material 2 (WAV 237 kb)
11692_2014_9274_MOESM3_ESM.wav (241 kb)
Supplementary material 3 (WAV 241 kb)
11692_2014_9274_MOESM4_ESM.xlsx (93 kb)
Supplementary material 4 (XLSX 92 kb)


  1. Adams, D. C., & Collyer, M. L. (2007). Analysis of character divergence along environmental gradients and other covariates. Evolution, 61(3), 510–515.PubMedCrossRefGoogle Scholar
  2. Amezquita, A., Hodl, W., Lima, A. P., Castellanos, L., Erdtmann, L., & Carmozina, M. (2006). Masking interference and the evolution of the acoustic communication system in the Amazonian dendrobatid frog Allobates femoralis. Evolution, 60(9), 1874–1887.PubMedCrossRefGoogle Scholar
  3. Beane, J., Braswell, A., Mitchell, J., Palmer, W., & Harrison, J. (2010). Amphibians and reptiles of the Carolinas and Virginia (2nd ed.). Chapel Hill, NC: University of North Carolina Press.Google Scholar
  4. Bickford, D. P., Sheridan, J. A., & Howard, S. D. (2011). Climate change responses: Forgetting frogs, ferns and flies? Trends in Ecology & Evolution, 26(11), 553–554.CrossRefGoogle Scholar
  5. Blair, W. (1958). Mating call in the speciation of anuran amphibians. The American Naturalist, 92(862), 27–51.CrossRefGoogle Scholar
  6. Blair, W. F. (1974). Character displacement in frogs. American Zoologist, 14(4), 1119–1125.Google Scholar
  7. Blem, C., Steiner, J., & Miller, M. (1978). Comparison of jumping abilities of the cricket frogs Acris gryllus and Acris crepitans. Herpetologica, 34(3), 288–291.Google Scholar
  8. Brown, J. M., Hedtke, S. M., Lemmon, A. R., & Lemmon, E. M. (2010). When trees grow too long: Investigating the causes of highly inaccurate Bayesian branch-length estimates. Systematic Biology, 59(2), 145–161.PubMedCrossRefGoogle Scholar
  9. Brown, W., & Wilson, E. O. (1956). Character displacement. Systematic Zoology, 5(2), 49–64.CrossRefGoogle Scholar
  10. Burmeister, S., Ophir, A., & Ryan, M. J. (2002). Information transfer during cricket frog contests. Animal Behaviour, 64(5), 715–725.CrossRefGoogle Scholar
  11. Burmeister, S., Wilczynski, W., & Ryan, M. J. (1999). Temporal call changes and prior experience affect graded signaling in the cricket frog. Animal Behaviour, 57(3), 611–618.PubMedCrossRefGoogle Scholar
  12. Butlin, R. (1987). Speciation by reinforcement. Trends in Ecology & Evolution, 2(1), 8–13.CrossRefGoogle Scholar
  13. Capranica, R., Frishkopf, L., & Nevo, E. (1973). Encoding of geographic dialects in the auditory system of the cricket frog. Science, 182(4118), 1272–1275.PubMedCrossRefGoogle Scholar
  14. Collins, J., & Taggart, T. (2009). Standard common and current scientific names for North American amphibians, turtles, reptiles & crocodilians (6th ed.). Lawrence, KS: Center for North American Herpetology.Google Scholar
  15. Conant, R., & Collins, J. (1991). A field guide to the reptiles and amphibians: Eastern and Central North America (3rd ed.). Boston, MA: Houghton Mifflin Company.Google Scholar
  16. Crampton, W. G. R., Lovejoy, N. R., & Waddell, J. C. (2011). Reproductive character displacement and signal ontogeny in a sympatric assemblage of electric fish. Evolution, 65(6), 1650–1666.Google Scholar
  17. Dayan, T., & Simberloff, D. (2005). Ecological and community-wide character displacement: The next generation. Ecology Letters, 8(8), 875–894.CrossRefGoogle Scholar
  18. Dobzhansky, T. (1940). Speciation as a stage in evolutionary divergence. The American Naturalist, 74(753), 312–321.CrossRefGoogle Scholar
  19. Duellman, W. E., & Sweet, S. S. (1999). Distribution patterns of amphibians in the Nearctic Region of North America. In W. E. Duellman (Ed.), Patterns of distribution of amphibians: A global perspective (pp. 31–109). Baltimore, MD: John Hopkins University Press.Google Scholar
  20. Faivovich, J., Haddad, C., Garcia, P., Frost, D., Campbell, J., & Wheeler, W. (2005). Systematic review of the frog family Hylidae, with special reference to Hylinae: Phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of Natural History, 294, 1–240.Google Scholar
  21. Fouquette, M. (1975). Speciation in chorus frogs. I. Reproductive character displacement in the Pseudacris nigrita complex. Systematic Zoology, 24(1), 16–23.CrossRefGoogle Scholar
  22. Gamble, T., Berendzen, P., Bradley Shaffer, H., Starkey, D., & Simons, A. (2008). Species limits and phylogeography of North American cricket frogs (Acris: Hylidae). Molecular Phylogenetics and Evolution, 48(1), 112–125.PubMedCrossRefGoogle Scholar
  23. Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: A third universal response to warming? Trends in Ecology & Evolution, 26(6), 285–291.CrossRefGoogle Scholar
  24. Gerhardt, H. C. (1975). Sound pressure levels and radiation patterns of the vocalizations of some North American frogs and toads. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 102(1), 1–12.CrossRefGoogle Scholar
  25. Gerhardt, H. C. (1994). Reproductive character displacement of female mate choice in the grey treefrog, Hyla chrysoscelis. Animal Behaviour, 47(4), 959–969.CrossRefGoogle Scholar
  26. Gerhardt, H. C., & Huber, F. (2002). Acoustic communication in insects and Anurans: Common problems and diverse solutions. Chicago, IL: University of Chicago Press.Google Scholar
  27. Gerhardt, H. C., & Klump, G. M. (1988). Masking of acoustic signals by the chorus background noise in the green tree frog: A limitation on mate choice. Animal Behaviour, 36(3), 1247–1249.CrossRefGoogle Scholar
  28. Gerhardt, H. K., & Mudry, K. M. (1980). Temperature effects on frequency preferences and mating call frequencies in the Green Treefrog, Hyla cinerea (Anura: Hylidae). Journal of Comparative Physiology, 137, 1–6.Google Scholar
  29. Goldberg, E., & Lande, R. (2006). Ecological and reproductive character displacement on an environmental gradient. Evolution, 60(7), 1344–1357.PubMedGoogle Scholar
  30. Grant, P. R., & Grant, B. R. (2006). Evolution of character displacement in Darwin’s finches. Science, 313(5784), 224–226.PubMedCrossRefGoogle Scholar
  31. Gray, R., & Brown, L. (2005). Decline of Northern cricket frogs (Acris crepitans). In M. Lannoo (Ed.), Amphibian declines: The conservation status of United States Species (pp. 47–54). Berkeley, CA: University of California Press.CrossRefGoogle Scholar
  32. Gröning, J., & Hochkirch, A. (2008). Reproductive interference between animal species. The Quarterly Review of Biology, 83(3), 257–282.PubMedCrossRefGoogle Scholar
  33. Haenel, G., Strelow, B., & Micancin, J. (2012). Exploring evolutionary and ecological causes of a dynamic species boundary in cricket frogs. Ottowa, Canada: 1st Joint Congress on Evolutionary Biology.Google Scholar
  34. Höbel, G., & Gerhardt, H. C. (2003). Reproductive character displacement in the acoustic communication system of green treefrogs (Hyla cinerea). Evolution, 57(4), 894–904.PubMedCrossRefGoogle Scholar
  35. IUCN, International, C., & NatureServe. (2008). An analysis of amphibians on the 2008 IUCN Red List. International Union for the Conservation of Nature. Retrieved December 1, 2013,
  36. Jensen, J. B., Camp, C. D., Gibbons, W., & Elliot, M. J. (2008). Amphibians and reptiles of Georgia. Athens, GA: University of Georgia Press.Google Scholar
  37. Johanet, A., Secondi, J., Pays, O., Pagano, A., Lodé, T., & Lemaire, C. (2009). A case of reproductive character displacement in female palmate newts (Lissotriton helveticus). Comptes Rendus Biologies, 332(6), 548–557.PubMedCrossRefGoogle Scholar
  38. Keddy-Hector, A., Wilczynski, W., & Ryan, M. J. (1992). Call patterns and basilar papilla tuning in cricket frogs. II. Intrapopulation variation and allometry. Brain, Behavior and Evolution, 39, 238–246.PubMedCrossRefGoogle Scholar
  39. Kime, N., Burmeister, S., & Ryan, M. J. (2004). Female preferences for socially variable call characters in the cricket frog, Acris crepitans. Animal Behaviour, 68(6), 1391–1399.CrossRefGoogle Scholar
  40. Kirschel, A., Blumstein, D., & Smith, T. (2009). Character displacement of song and morphology in African tinkerbirds. Proceedings of the National Academy of Sciences of the United States of America, 106(20), 8256.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Lemmon, E. M. (2009). Diversification of conspecific signals in sympatry: Geographic overlap drives multidimensional reproductive character displacement in frogs. Evolution, 63(5), 1155–1170.PubMedCrossRefGoogle Scholar
  42. Littlejohn, M. (1959). Call differentiation in a complex of seven species of Crinia (Anura, Leptodactylidae). Evolution, 13(4), 452–468.CrossRefGoogle Scholar
  43. Littlejohn, M. (1965). Premating isolation in the Hyla ewingi complex (Anura: Hylidae). Evolution, 19(2), 234–243.CrossRefGoogle Scholar
  44. Littlejohn, M. J., & Fouquette, M. (1960). Call discrimination by female frogs of the Hyla versicolor complex. Copeia, 1960(1), 47–49.CrossRefGoogle Scholar
  45. Loftus-Hills, J., & Littlejohn, M. (1992). Reinforcement and reproductive character displacement in Gastrophryne carolinensis and G. olivacea (Anura, Microhylidae): A reexamination. Evolution, 46(4), 896–906.CrossRefGoogle Scholar
  46. McCallum, M. L., Brooks, C., Mason, R., & Trauth, S. (2011). Growth, reproduction, and life span in Blanchard’s Cricket Frog (Acris blanchardi) with notes on the growth of the Northern Cricket Frog (Acris crepitans). Herpetology Notes, 4, 1–11.Google Scholar
  47. McCauley, S. J., & Mabry, K. E. (2011). Climate change, body size, and phenotype dependent dispersal. Trends in Ecology & Evolution, 26(11), 554–555.CrossRefGoogle Scholar
  48. McClelland, B. E., Wilczynski, W., & Ryan, M. J. (1996). Correlations between call characteristics and morphology in male cricket frogs (Acris crepitans). Journal of Experimental Biology, 199(9), 1907–1919.PubMedGoogle Scholar
  49. McDonald, J. (2009). Handbook of biological statistics. Baltimore, MD: Sparky House Publishing.Google Scholar
  50. Meiri, S., Simberloff, D., & Dayan, T. (2011). Community-wide character displacement in the presence of clines: A test of Holarctic weasel guilds. Journal of Animal Ecology, 80(4), 824–834.PubMedCrossRefGoogle Scholar
  51. Micancin, J. P., & Mette, J. T. (2009). Acoustic and morphological identification of the sympatric cricket frogs Acris crepitans and A. gryllus and the disappearance of A. gryllus near the edge of its range. Zootaxa, 2076, 1–36.Google Scholar
  52. Micancin, J. P., & Mette, J. T. (2010). Acris crepitans (Northern Cricket Frog) and Acris gryllus (Southern Cricket Frog). interspecific agonism. Herpetological Review, 41(2), 192.Google Scholar
  53. Micancin, J. P., Toth, A. B., Anderson, R. B., & Mette, J. T. (2012). Sympatry and syntopy of the cricket frogs Acris crepitans and A. gryllus in southeastern Virginia, USA and decline of A. gryllus at the northern edge of its range. Herpetological Conservation and Biology, 7, 276–298.Google Scholar
  54. Mount, R. (1996). The reptiles and amphibians of Alabama. Tuscaloosa, AL: The University of Alabama Press.Google Scholar
  55. Nevo, E. (1973). Adaptive variation in size of cricket frogs. Ecology, 54(6), 1271–1281.CrossRefGoogle Scholar
  56. Nevo, E., & Capranica, R. (1985). Evolutionary origin of ethological reproductive isolation in cricket frogs, Acris. Evolutionary Biology, 19, 147–214.Google Scholar
  57. Noor, M. A. F. (1999). Reinforcement and other consequences of sympatry. Heredity, 83, 503–508.PubMedCrossRefGoogle Scholar
  58. Perrill, S. A., & Lower, L. C. (1994). Advertisement call discrimination by female cricket frogs (Acris crepitans). Journal of Herpetology, 28(3), 399–400.CrossRefGoogle Scholar
  59. Pfennig, K. S., & Pfennig, D. W. (2009). Character displacement: Ecological and reproductive responses to a common evolutionary problem. The Quarterly Review of Biology, 84(3), 253–276.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Pfennig, D. W., & Pfennig, K. S. (2010). Character displacement and the origins of diversity. The American Naturalist, 176, S26–S44.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Richards-Zawacki, C. L., & Cummings, M. E. (2011). Intraspecific reproductive character displacement in a polymorphic poison dart frog, Dendrobates pumilio. Evolution, 65(1), 259–267.PubMedCrossRefGoogle Scholar
  62. Rissler, L. J., & Smith, W. H. (2010). Mapping amphibian contact zones and phylogeographical break hotspots across the United States. Molecular Ecology, 19(24), 5404–5416.PubMedCrossRefGoogle Scholar
  63. Rivas, L. (1964). A reinterpretation of the concepts “sympatric” and “allopatric” with proposal of the additional terms “syntopic” and “allotopic”. Systematic Zoology, 13(1), 42–43.CrossRefGoogle Scholar
  64. Rundle, H. D., & Schluter, D. (2004). Natural selection and ecological speciation in sticklebacks. In U. Dieckmann, M. Doebeli, & J. Metz (Eds.), Adaptive speciation (pp. 192–209). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Ryan, M. J., & Keddy-Hector, A. (1992). Directional patterns of female mate choice and the role of sensory biases. American Naturalist, 139, S4–S35.CrossRefGoogle Scholar
  66. Ryan, M. J., & Wilczynski, W. (1988). Coevolution of sender and receiver: Effect on local mate preference in cricket frogs. Science, 240, 1786–1788.PubMedCrossRefGoogle Scholar
  67. Ryan, M. J., & Wilczynski, W. (1991). Evolution of intraspecific variation in the advertisement call of a cricket frog (Acris crepitans, Hylidae). Biological Journal of the Linnean Society, 44, 249–271.CrossRefGoogle Scholar
  68. SAS Institute Inc (2009). JMP 9 Modeling and Multivariate Methods. Cary, NC.Google Scholar
  69. Schluter, D. (2000). Ecological character displacement in adaptive radiation. The American Naturalist, 156(4), S4–S16.CrossRefGoogle Scholar
  70. Servedio, M. R., & Noor, M. A. F. (2003). The role of reinforcement in speciation: Theory and data. Annual Review of Ecology Evolution and Systematics, 34, 339–364.CrossRefGoogle Scholar
  71. Smith, M. J., Osborne, W., & Hunter, D. (2003). Geographic variation in the advertisement call structure of Litoria verreauxii (Anura: Hylidae). Copeia, 4, 750–758.CrossRefGoogle Scholar
  72. Smith, S. A., Stephens, P. R., & Wiens, J. J. (2005). Replicate patterns of species richness, historical biogeography, and phylogeny in Holarctic treefrogs. Evolution, 59(11), 2433–2450.PubMedCrossRefGoogle Scholar
  73. Wagner, W. (1989a). Fighting, assessment, and frequency alteration in Blanchard’s cricket frog. Behavioral Ecology and Sociobiology, 25, 429–436.CrossRefGoogle Scholar
  74. Wagner, W. (1989b). Graded aggressive signals in Blanchard’s cricket frog: Vocal responses to opponent proximity and size. Animal Behaviour, 38, 1025–1038.CrossRefGoogle Scholar
  75. Wagner, W. (1989c). Social correlates of variation in male calling behavior in Blanchard’s cricket frog, Acris crepitans blanchardi. Ethology, 82, 27–45.CrossRefGoogle Scholar
  76. Wagner, W. E. (1992). Deceptive or honest signaling of fighting ability? A test of alternative hypotheses for the function of changes in call dominant frequency by male cricket frogs. Animal Behaviour, 44, 449–462.CrossRefGoogle Scholar
  77. Wells, K. D. (2007). The ecology and behavior of amphibians. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  78. Wilczynski, W., Keddy-Hector, A., & Ryan, M. J. (1992). Call patterns and basilar papilla tuning in cricket frogs. I. Differences among populations and between sexes. Brain, Behavior and Evolution, 39, 229–237.PubMedCrossRefGoogle Scholar
  79. Wollerman, L. (1999). Acoustic interference limits call detection in a Neotropical frog Hyla ebraccata. Animal Behaviour, 57(3), 529–536.Google Scholar
  80. Wollerman, L., & Wiley, R. H. (2002). Background noise from a natural chorus alters female discrimination of male calls in a Neotropical frog. Animal Behaviour, 63(1), 15–22.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of BiologyUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations