Advertisement

Evolutionary Biology

, Volume 41, Issue 2, pp 308–326 | Cite as

Anuran Locomotion: Ontogeny and Morphological Variation of a Distinctive Set of Muscles

  • Marissa Fabrezi
  • Adriana S. Manzano
  • Virginia Abdala
  • Fernando Lobo
Research Article

Abstract

Adult morphological variation of muscles originating on the iliac shaft (M. iliacus externus, M. internus, and tensor fasciae latae) and vertebrae (M. longissimus dorsi, M. coccygeosacralis, and M. coccygeoiliacus) that are involved in postmetamorphic anuran locomotion was recorded in 41 neobatrachians and coded in 13 more based on the literature, for a total of 54 anuran species. In addition, we explored the spatial and temporal sequences in the ontogeny of these set of muscles from larval series of 19 neobatrachians whose adults differ in locomotion and lifestyle. Our findings suggest that: (1) jumping, swimming, and/or walking are capabilities that could have been achieved from novelties of limbs and protractor muscles of the femur rather than from changes in the axial musculoskeletal system; (2) the initial ontogenetic phase of the locomotion comprises the capability to escape, when the tail is still present; (3) the secondary phase of locomotion comprises changes in the axial skeleton and muscles integrated to the pelvis and might develop simultaneously with the new feeding mechanism of the recently metamorphosed frog.

Keywords

Jumping Metamorphosis Muscle iliacus Evolution Amphibians 

Notes

Acknowledgments

We are grateful to John Reiss for many suggestions on this English written. Jorgelina Brasca provided several corrections to the English style in the early version of the manuscript. Two anonymous reviewers contributed with many comments. Secretaría de Medio Ambiente y Desarrollo Sustentable, Gobierno de la Provincia de Salta for permissions to collect the specimens deposited in the Museo de Ciencias Naturales, Universidad Nacional de Salta. This research was supported by CONICET, PIP 239 to MF and Agencia Nacional de Promoción Científica y Tecnológica (PICT Bicentenario 0616).

References

  1. Bell, F. (1998). Principles of mechanics and biomechanics. Cheltenham: Stanley Thornes.Google Scholar
  2. Blanco, M. J., Misof, B. Y., & Wagner, G. P. (1998). Heterochronic differences of Hoxa-11 expression in Xenopus fore- and hind limb development: Evidence for lower limb identity of the anuran ankle bones. Development Genes and Evolution, 208, 175–187.PubMedCrossRefGoogle Scholar
  3. Bock, W. J., & Shear, R. (1972). A staining method for gross dissection of vertebrate muscles. Anatomischer Anzeiger, 130, 222–227.PubMedGoogle Scholar
  4. Burton, T. C. (1998). Are the distal extensor muscles of the fingers of anurans an adaptation to arboreality? Journal of Herpetology, 32, 611–617.CrossRefGoogle Scholar
  5. Emerson, S. B. (1978). Allometry and jumping in frogs: Helping the twain to meet. Evolution, 32, 551–564.CrossRefGoogle Scholar
  6. Emerson, S. B. (1979). The ilio-sacral articulation in frogs: form and function. Biological Journal of the Linnean Society, 11, 153–168.CrossRefGoogle Scholar
  7. Emerson, S. B. (1982). Frog postcranial morphology: Identification of a functional complex. Copeia, 1982, 603–613.CrossRefGoogle Scholar
  8. Emerson, S. B., & De Jongh, H. J. (1980). Muscle activity at the ilio-sacral articulation of frogs. Journal of Morphology, 166, 129–144.CrossRefGoogle Scholar
  9. Emerson, S. B., & Diehl, D. (1980). Toe pad morphology and mechanisms of sticking in frogs. Biological Journal of the Linnean Society, 13, 199–216.CrossRefGoogle Scholar
  10. Emerson, S. B., & Koehl, M. A. R. (1990). The interaction of behavioral and morphological change in the evolution of a novel locomotor type: ‘Flying’ frogs. Evolution, 44, 1931–1946.CrossRefGoogle Scholar
  11. Fabrezi, M. (2001). A survey of prepollex and prehallux variation in anuran limbs. Zoological Journal of the Linnean Society, 131, 227–248.CrossRefGoogle Scholar
  12. Fabrezi, M. (2011). Heterochrony in growth and development in anurans from the chaco of South America. Evolutionary Biology, 38, 390–411.CrossRefGoogle Scholar
  13. Fabrezi, M., & Goldberg, J. (2009). Heterochrony during skeletal development of Pseudis platensis (Anura, Hylidae) and the early offset of skeleton development and growth. Journal of Morphology, 270, 205–220.PubMedCrossRefGoogle Scholar
  14. Fabrezi, M., & Lobo, F. J. (2009). Hyoid skeleton, related muscles, and morphological novelties in the frog Lepidobatrachus (Anura, Ceratophryidae). Anatomical Record, 292, 1700–1712.CrossRefGoogle Scholar
  15. Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C. F. B., et al. (2006). The amphibian tree of life. Bulletin of American Museum of Natural History, 297, 1–370.CrossRefGoogle Scholar
  16. Gans, C., & Parsons, T. S. (1966). On the origin of the jumping mechanism in frogs. Evolution, 20, 92–99.CrossRefGoogle Scholar
  17. Goldberg, J., & Fabrezi, M. (2008). Development and variation of the anuran webbed feet (Amphibia. Anura). Zoological Journal of the Linnean Society, 152, 39–58.CrossRefGoogle Scholar
  18. Goloboff, P.A., Farris, J., \& Nixon, K. (2003). TNT: tree analysis using new technology. Available at: www.cladistics.com.
  19. Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183–190.Google Scholar
  20. Grant, T., Frost, D. R., Cladwell, J. P., Gagliardo, R., Haddad, C. F. B., Kok, P. J. R., et al. (2006). Phylogenetic systematics of dartpoison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of American Museum of Natural History, 299, 1–262.CrossRefGoogle Scholar
  21. Handrigan, G. R., & Wassersug, R. J. (2007). The anuran Bauplan: a review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology. Biological Reviews, 82, 1–25.PubMedCrossRefGoogle Scholar
  22. Jenkins, F. A., & Shubin, N. H. (1998). Prosalirus bitis and the anuran caudopelvic mechanism. Journal of Vertebrate Paleontology, 18, 495–510.CrossRefGoogle Scholar
  23. Jorgensen, M. E., & Reilly, S. M. (2013). Phylogenetic patterns of skeletal morphometrics and pelvic traits in relation to locomotor mode in frogs. Journal of Evolutionary Biology, 26, 929–943.PubMedCrossRefGoogle Scholar
  24. Kargo, W. J., & Rome, L. C. (2002). Functional morphology of proximal hind limb muscles in the frog Rana pipiens. Journal of Experimental Biology, 205, 1987–2004.PubMedGoogle Scholar
  25. Limeses, C. E. (1963). La musculature del muslo en las especies del género Lepidobatrachus (Anura-Ceratophrynidae). Physis, 24, 205–218.Google Scholar
  26. Limeses, C. E. (1964). La musculatura del muslo en los ceratofrínidos y formas afines. Contribuciones Científicas de la Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Serie Zoología, 1, 191–245.Google Scholar
  27. Manzano, A., Abdala, V., Ponssa, M. L., & Soliz, M. (2013). Ontogeny and tissue differentiation of the pelvic girdle and hind limbs of anurans. Acta Zoologica, 94, 420–436.Google Scholar
  28. Manzano, A. S., & Barg, M. (2005). The iliosacral articulation in Pseudinae (Anura: Hylidae). Herpetologica, 61, 259–267.CrossRefGoogle Scholar
  29. Manzano, A. S., Fabrezi, M., & Vences, M. (2007). Intercalary elements, treefrogs, and the early differentiation of a complex system in the Neobatrachia. Anatomical Record, 290, 1551–1567.CrossRefGoogle Scholar
  30. Nauwelaerts, S., Ramsay, J., & Aerts, P. (2007). Morphological correlates of aquatic and terrestrial locomotion in a semi-aquatic frog, Rana esculenta: No evidence for a design conflict. Journal of Anatomy, 210, 304–317.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Nauwelaerts, S., Stamhius, E., & Aerts, P. (2005). Swimming and jumping in a semi-aquatic frog. Animal Biology, 55, 3–15.CrossRefGoogle Scholar
  32. Oatis Carol Ed. (2009). Kinesiology: The mechanics and pathomechanics of human movement (recall series).Google Scholar
  33. Přikryl, T., Aerts, P., Havelková, P., Herrel, A., & Roček, Z. (2009). Pelvic and thigh musculature in frogs (Anura) and origin of anuran jumping locomotion. Journal of Anatomy, 214, 100–139.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Pugener, L. A., & Maglia, A. M. (2009). Developmental evolution of the anuran sacro-urostylic complex. South American Journal of Herpetology, 4, 193–209.CrossRefGoogle Scholar
  35. Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61, 543–583.PubMedCrossRefGoogle Scholar
  36. Rage, J.-C., & Roček, Z. (1989). Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the Early Triassic. Palaeontographica A, 206, 1–16.Google Scholar
  37. Reilly, S. M., & Jorgensen, M. E. (2011). The evolution of jumping in frogs: Morphological evidence for the basal anuran locomotor condition and the radiation of locomotor system in crown group anurans. Journal of Morphology, 272, 149–168.PubMedCrossRefGoogle Scholar
  38. Ročková, H., & Roček, Z. (2005). Development of the pelvis and posterior part of the vertebral column in the Anura. Journal of Anatomy, 206, 17–35.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Shubin, N. H., & Jenkins, E. A. (1995). An early Jurassic jumping frog. Nature, 377, 49–52.CrossRefGoogle Scholar
  40. Sigurdsen, T., Green, D. M., & Bishop, P. J. (2012). Did Triadobatrachus jump? Morphology and evolution of the anuran forelimb in relation to locomotion in early salientians. Fieldiana Life and Earth Sciences, 5, 77–89.CrossRefGoogle Scholar
  41. Wassersug, R. J. (1975). The adaptive significance of the tadpole stage with comments on the maintenance of complex life cycles in anurans. American Zoologist, 15, 405–417.Google Scholar
  42. Wassersug, R. J. (1976). A procedure for differential staining of cartilage and bone in whole formalin fixed vertebrates. Stain Technology, 51, 131–134.PubMedGoogle Scholar
  43. Wassersug, R. J. (1989). Locomotion in amphibian larvae (or “why aren’t tadpoles built like fishes”). American Zoologist, 29, 65–84.Google Scholar
  44. Wassersug, R. J., & Hoff, K. (1985). The kinematics of swimming in anuran larvae. Journal of Experimental Biology, 119, 1–30.Google Scholar
  45. Wassersug, R. J., & Sperry, D. G. (1977). The relationships of locomotion to differential predation on Pseudacris triseriata (Anura, Hylidae). Ecology, 58, 830–839.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marissa Fabrezi
    • 1
  • Adriana S. Manzano
    • 2
  • Virginia Abdala
    • 3
  • Fernando Lobo
    • 1
  1. 1.Centro Científico Tecnológico, Instituto de Bio y Geociencias, CONICETUniversidad Nacional de SaltaSaltaRepública Argentina
  2. 2.CONICETUniversidad Autónoma de Entre RíosDiamanteRepública Argentina
  3. 3.Instituto de Biodiversidad Neotropical CONICET – UNT and Biología General, Facultad de Ciencias Naturales e Instituto Miguel LilloUniversidad Nacional de TucumánSan Miguel de TucumánRepública Argentina

Personalised recommendations