Skip to main content

Historical Biogeography and Body Form Evolution of Ground Squirrels (Sciuridae: Xerinae)

Abstract

Xerinae is the most species-rich subfamily of the Sciuridae (Rodentia). This group of animals has a long complex evolutionary history, which witnessed severe environmental changes. In this paper, a comprehensive approach integrating information from fossil records, morphological, molecular and geographical data of extant species, and events of paleoclimate and paleogeography, were used to explore the evolutionary processes in the Xerinae. Xerinae probably originated in Eurasia around the early Oligocene, and dispersed to Africa via the Africa-Eurasia Land Bridge on two occasions during the Miocene, and subsequently evolved into the Protoxerini and African Xerini. The tribe Marmotini derived from a Eurasian ancestor and thrived in North America. Tamias re-occupied Eurasia in the early Miocene, while the distributions of Marmota and ‘Spermophilus’ genus-groups were restricted to North America at least until the late Miocene. Global cooling and the emergence of grass-dominated ecosystems from 15 Ma are likely to be the main causes for the radiation of Marmotini. The body form of Xerinae displays an allometric mode of evolution, with ground-living taxa, such as Marmota, Cynomys and Xerus notably enlarged, while Tamias has remained slim in body form. To cope with the global environmental changes, particularly the global cooling induced forest degradation and grassland expansion in the late Miocene, most Marmotini developed into true ground squirrels with short tails. The slim body adaptation in Tamias may be related to competition from tree squirrels, or their hoarding behavior, the latter helping them to cope with cold winter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alroy, J., & Turner, A. (2013). Taxonomic occurrences of Sciuridae. Paleobiology Database. Available at http://paleodb.org.

  2. Armitage, K. B. (1981). Sociality as a life-history tactic of ground squirrels. Oecologia, 48(1), 36–49.

    Article  Google Scholar 

  3. Basset, Y., Cizek, L., Cuenoud, P., Didham, R. K., Guilhaumon, F., Missa, O., et al. (2012). Arthropod diversity in a tropical forest. Science, 338, 1481–1484.

    CAS  PubMed  Article  Google Scholar 

  4. Boggs, S. (1972). Petrography and geochemistry of rhombic, calcite pseudomorphs from mid-Tertiary Mudstones of Pacific-Northwest, USA. Sedimentology, 19(3–4), 219–235.

    CAS  Article  Google Scholar 

  5. Broadbooks, H. E. (1958). Life history and ecology of the chipmunk, Eutamias amoenus, in Eastern Washington. Miscellaneous Publications Museum of Zoology University of Michigan, 103, 1–42.

    Google Scholar 

  6. Brown, J. H., & Mauer, B. A. (1986). Body size, ecological dominance and Cope’s rule. Nature, 324, 248–250.

    Article  Google Scholar 

  7. Callahan, J. R., & Davis, R. (1982). Reproductive tract and evolutionary relationships of the Chinese rock squirrel, Sciurotamias davidianus. Journal of Mammalogy, 63(1), 42–47.

    Article  Google Scholar 

  8. Clause, G. F. (1934). Experimental analysis of vito volterra’s mathematical theory of the struggle for existence. Science, 79(2036), 16–17.

    Google Scholar 

  9. Cope, E. D. (1880). Second contribution to a knowledge of the Miocene fauna of Oregon. In Proceedings of the American Philosophical Society, pp. 370–376.

  10. Cuenca Bescos, G., & Canudo, J. I. (1992). Los Sciuridae (Rodentia, Mammalia) del Oligoceno inferior de Montalban y Olalla (Teruel, Espana). Discusion sobre el origen de los esciuridos. Boletin de la Real Sociedad Espanola de Historia Natural Seccion Geologica, 87, 155–169.

    Google Scholar 

  11. Cuthill, I. (2009). The study of function in behavioral ecology. In J. Bolhuis & S. Verhulst (Eds.), Tinbergen’s legacy: Function and mechanism in behavioral biology (pp. 107–126). Cambridge: Cambridge University Press.

    Google Scholar 

  12. Davis, E. B. (2005). Comparison of climate space and phylogeny of Marmota (Mammalia: Rodentia) indicates a connection between evolutionary history and climate preference. Proceedings of the Royal Society Biological Sciences Series B, 272, 519–526.

    Article  Google Scholar 

  13. de Bruijn, H. (1967). Gliridae, Sciuridae y Eomyidae (Rodentia, Mammalia) miocenos de Calatayud (provincia de Zaragoza, Espana) y su relacion con la biostratigrafia del arta. Boletin del Instituto Geologico y Minero de Espana, 78, 187–373.

    Google Scholar 

  14. de Bruijn, H., & Unay, E. (1989). Petauristinae (Mammalia, Rodentia) from the Oligocene of Spain, Belgium, and Turkish Thrace. Natural History Museum of Los Angeles County Science Series, pp. 139–145.

  15. de Bruijn, H., van der Meulen, A. J., & Katsikatsos, G. (1980). The mammals from the Lower Miocene of Aliveri (Island of Evia, Greece) Part 1 The Sciuridae. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B Physical Sciences, 83(3), 241–261.

    Google Scholar 

  16. Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. Evolution Biology, 7, 214.

    Article  Google Scholar 

  17. Edwards, E. J., Osborne, C. P., Stromberg, C. A. E., Smith, S. A., & C4 Grasses Consortium. (2010). The origins of C4 grasslands: Integrating evolutionary and ecosystem science. Science, 328(5978), 587–591.

    CAS  PubMed  Article  Google Scholar 

  18. Eldredge, N. (1977). Patterns of evolution as illustrated by the Fossil Record. Amsterdam: Elsevier.

    Google Scholar 

  19. Elliott, L. (1978). Social behaviour and foraging ecology of the eastern chipmunk (Tamias striatus) in the Adirondack Mountains. Smithsonian Contributions to Zoology, 265, 1–107.

    Article  Google Scholar 

  20. Emmons, L. H. (1979). Observations on litter size and development of some African rainforest squirrels. Biotropica, 11, 207–213.

    Article  Google Scholar 

  21. Emmons, L. H., & Gentry, A. H. (1983). Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. American Naturalist, 121, 513–524.

    Article  Google Scholar 

  22. Evans, A. R., Jones, D., Boyer, A. G., Brown, J. H., Costa, D. P., Morgen Ernest, S. K., et al. (2012). The maximum rate of mammal evolution. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4187–4190.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Fick, L. G., Kucio, T. A., Fuller, A., Matthee, A., & Mitchell, D. (2009). The relative roles of the parasol-like tail and burrow shuttling in thermoregulation of free-ranging Cape ground squirrels, Xerus inauris. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 152(3), 334–340.

    Article  Google Scholar 

  24. Gazin, C. L. (1932). A Miocene mammalian fauna from southeastern Oregon. Publications of the Carnegie Institution, 41, 37–86.

    Google Scholar 

  25. Ge, D. Y., Wen, Z. X., Xia, L., Zhang, Z. Q., Erbajeva, M., Huang, C. M., et al. (2013). Evolutionary history of lagomorphs in response to global environmental change. PLoS ONE, 8(4), e59668.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Ge, D. Y., Zhang, Z. Q., Xia, L., Zhang, Q., Ma, Y., & Yang, Q. S. (2012). Did the expansion of C4 plants drive extinction and massive range contraction of micromammals? Inferences from food preference and historical biogeography of pikas. Palaeogeography, Palaeoclimatology, Palaeoecology, 326–328, 160–171.

    Article  Google Scholar 

  27. Giboulet, O., Chevret, P., Ramousse, R., & Catzeflis, F. (1997). DNA–DNA hybridization evidence for the recent origin of marmots and ground squirrels (Rodentia: Sciuridae). Journal of Mammalian Evolution, 4(4), 271–284.

    Article  Google Scholar 

  28. Gladenkov, A. Y., Oleinik, A. E., Marincovich, L. J., & Barinov, K. B. (2002). A refined age for the earliest opening of Bering Strait. Palaeogeography, Palaeoclimatology, Palaeoecology, 183(3–4), 321–328.

    Article  Google Scholar 

  29. Goodwin, H. T. (2009). Odontometric patterns in the radiation of extant ground-dwelling squirrels within Marmotini (Sciuridae: Xerini). Journal of Mammalogy, 90, 1009–1019.

    Article  Google Scholar 

  30. Gouat, P., & Yahyaoui, I. (2001). Reproductive period and group structure variety in the Barbary ground squirrel Atlantoxerus getulus. In Proceedings of the 8th international symposium on African small mammals (Paris, July 1999), Paris: IRD Editions, pp. 343–352.

  31. Hall, E. R. (1930). Rodents and Lagomorphs from the Barstow beds of Southern California. University of California Publications in Geological Sciences, 19, 313–318.

    Google Scholar 

  32. Hallam, A. (1994). An outline of Phanerozoic biogeography. Oxford Biogeography Series, 10, 1–246.

    Google Scholar 

  33. Harris, A. J., & Xiang, Q. Y. (2009). Estimating ancestral distributions of lineages with uncertain sister groups: A statistical approach to Dispersal-Vicariance Analysis and a case using Aesculus L. (Sapindaceae) including fossils. Journal of Systematics and Evolution, 47(5), 349–368.

    Article  Google Scholar 

  34. Harrison, R. G., Bogdanowicz, S. M., Hoffmann, R. S., Yensen, E., & Sherman, P. W. (2003). Phylogeny and evolutionary history of the ground squirrels (Rodentia: Marmotinae). Journal of Mammalian Evolution, 10, 249–276.

    Article  Google Scholar 

  35. Hayssen, V. (2008). Patterns of body and tail length and body mass in Sciuridae. Journal of Mammalogy, 89(4), 852–873.

    Article  Google Scholar 

  36. Helgen, K. M., Cole, F. R., Helgen, L. E., & Wilson, D. E. (2009). Generic revision in the Holarctic ground squirrel genus Spermophilus. Journal of Mammalogy, 90(2), 270–305.

    Article  Google Scholar 

  37. Herron, M. D., Castoe, T. A., & Parkinson, C. L. (2004). Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus). Molecular Phylogenetics and Evolution, 31(3), 1015–1030.

    CAS  PubMed  Article  Google Scholar 

  38. Herron, M. D., Waterman, J. M., & Parkinson, C. L. (2005). Phylogeny and historical biogeography of African ground squirrels: The role of climate change in the evolution of Xerus. Molecular Ecology, 14(9), 2773–2788.

    CAS  PubMed  Article  Google Scholar 

  39. Hibbard, C. W. (1941). New mammals from the Rexroad fauna, Upper Pliocene of Kansas. American Midland Naturalist, 26, 337–368.

    Article  Google Scholar 

  40. Ho, S. Y. W., & Phillips, M. J. (2009). Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology, 58(3), 367–380.

    PubMed  Article  Google Scholar 

  41. Hoffmann, R. S., & Nadler, C. F. (1968). Chromosomes and systematics of some North American species of the genus Marmota (Rodentia: Sciuridae). Experientia, 24, 740–742.

    CAS  PubMed  Article  Google Scholar 

  42. Hone, D. W. E., & Benton, M. J. (2005). The evolution of large size: how does Cope’s Rule work? Trends in Ecology & Evolution, 20(1), 4–6.

    Article  Google Scholar 

  43. Hopkins, D. M. (1967). The Bering land bridge (i–x, pp 1–495). Stanford, CA: Stanford University Press.

  44. Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Evolution: Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294(5550), 2310–2314.

    CAS  PubMed  Article  Google Scholar 

  45. Hugueney, M. (1969). Les rongeurs (Mammalia) de l’Oligocene superieur de Coderet-Bransat (Allier). Documents du Laboratoire de Geologie de la Faculte des Sciences de Lyon, 34, 1–227.

    Google Scholar 

  46. Irwin, D. M., Kocher, T. D., & Wilson, A. C. (1991). Evolution of the cytochrome-B gene of mammals. Journal of Molecular Evolution, 32(2), 128–144.

    CAS  PubMed  Article  Google Scholar 

  47. Jacobs, B. F., Kingston, J. D., & Jacobs, L. L. (1999). The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86(2), 590–643.

    Article  Google Scholar 

  48. Janis, C. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics, 24, 467–500.

    Article  Google Scholar 

  49. Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J., Orme, C. D. L., et al. (2009). PanTHERIA: A species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90(9), 2648.

    Article  Google Scholar 

  50. Kellogg, M. L. (1910). Rodent fauna of the late Tertiary beds at Virgin Valley and Thousand Creek, Nevada. University of California publications in geological sciences, 5(29), 421–437.

    Google Scholar 

  51. Kelly, T. S. (1997). Additional Late Cenozoic (latest Hemphillian to earliest Irvingtonian) mammals from Douglas County. Nevada. Paleobios, 18(1), 1–31.

    Google Scholar 

  52. Kelly, T. S. (2000). A new Hemphillian (Late Miocene) mammalian fauna from Hoye Canyon, west central Nevada. Contributions in Science, 481, 1–21.

    Google Scholar 

  53. Kowalski, K. (1956). Insectivores, bats and rodents from the Early Pleistocene bone breccia of Podlesice near Kroczyce (Poland). Acta Palaeontologica Polonica, 1(4), 331–393.

    Google Scholar 

  54. Lavocat, E. (1961). Etude systematique de la faune de mammiferes et conclusions generales. Notes et Memoires du Service Geologique du Maroc, 155, 29–94.

    Google Scholar 

  55. Lv, X. F., Ge, D. Y., Xia, L., Zhang, Z. Q., Li, S., & Yang, Q. S. (2013). The evolution and paleobiogeography of flying squirrels (Sciuridae, Pteromyini) in response to global environmental change. Evolutionary Biology, 40(1), 117–132.

    Article  Google Scholar 

  56. MacFadden, B. J. (2005). Terrestrial mammalian herbivore response to declining levels of atmospheric CO2 during the Cenozoic: Evidence from North American fossil horses (family Equidae). Ecological Studies, 177, 273–292.

    CAS  Article  Google Scholar 

  57. Maddison, W., & Maddison, D. (2010). Mesquite: A modular system for evolutionary analysis (Version 2.73). http://mesquiteproject.org.

  58. Marincovich, L., & Gladenkov, A. Y. (1999). Evidence for an early opening of the Bering Strait. Nature, 397(6715), 149–151.

    CAS  Article  Google Scholar 

  59. McKenna, M. C., & Bell, S. K. (1997). Classification of mammals: Above the species level (i–xiii, pp. 1–631). New York, & Chichester, West Sussex: Columbia University Press.

  60. Mein, P., Pickford, M., & Senut, B. (2000). Late Miocene micromammals from the Harasib karst deposits, Namibia (Part 1: large muroids and non-muroid rodents). Communications of the Geological Survey of Namibia, 12, 375–390.

    Google Scholar 

  61. Mercer, J. M., & Roth, V. L. (2003). The effects of Cenozoic global change on squirrel phylogeny. Science, 299(5612), 1568–1572.

    CAS  PubMed  Article  Google Scholar 

  62. Near, T. J., Meylan, P. A., & Shaffer, H. B. (2005). Assessing concordance of fossil calibration points in molecular clock studies: An example using turtles. American Naturalist, 165(2), 137–146.

    PubMed  Article  Google Scholar 

  63. Nowak, R. M. (1999). Family Sciuridae. In R. Nowak (Ed.), Walker’s mammals of the world (6th ed., pp. 1246–1306). Baltimore and London: Johns Hopkins University Press.

    Google Scholar 

  64. Nylander, J. A., Olsson, U., Alstrom, P., & Sanmartin, I. (2008). Accounting for phylogenetic uncertainty in biogeography: A Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus). Systematic Biology, 57(2), 257–268.

    PubMed  Article  Google Scholar 

  65. Osborne, C. P., & Beerling, D. J. (2006). Nature’s green revolution: the remarkable evolutionary rise of C4 plants. Philosophical Transactions of the Royal Society Biological Sciences, 361, 173–194.

    PubMed  Article  Google Scholar 

  66. Piaggio, A. J., & Spicer, G. S. (2001). Molecular phylogeny of the chipmunks inferred from mitochondrial cytochrome b and cytochrome oxidase II gene sequences. Molecular Phylogenetics and Evolution, 20(3), 335–350.

    CAS  PubMed  Article  Google Scholar 

  67. Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25(7), 1253–1256.

    CAS  PubMed  Article  Google Scholar 

  68. Qiu, Z., Zheng, S., & Zhang, Z. (2008). Sciurids and zapodids from the Late Miocene Bahe Formation, Lantian, Shaanxi. Vertebrata Palasiatica, 46(2), 111–123.

    Google Scholar 

  69. Rambaut, A., & Drummond, A. J. (2007). Tracer v1.5. Available from http://beast.bio.ed.ac.uk/Tracer.

  70. Rogl, F. (1999). Mediterranean and Paratethys, facts and hypotheses of an Oligocene to Miocene paleogeography. Geologica Carpathica, 50(4), 339–349.

    Google Scholar 

  71. Ronquist, F. (2004). Bayesian inference of character evolution. Trends in Ecology & Evolution, 19(9), 475–481.

    Article  Google Scholar 

  72. Sanderson, M. J. (2002). Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Molecular Biology and Evolution, 19, 101–109.

    CAS  PubMed  Article  Google Scholar 

  73. Sanderson, M. J. (2003). r8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 19(2), 301–302.

    CAS  PubMed  Article  Google Scholar 

  74. Savile, D. B. O. (1960). Limitations of the competitive exclusion principle. Science, 132(3441), 1761.

    CAS  PubMed  Article  Google Scholar 

  75. Simpson, G. G. (1947). Evolution, interchange, and resemblance of the North American and Eurasian Cenozoic mammalian faunas. Evolution, 1(3), 218–220.

    Article  Google Scholar 

  76. Smith, A. B., & Peterson, K. J. (2002). Dating the time of origin of major clades: Molecular clocks and the fossil record. Annual Review of Earth and Planetary Sciences, 30, 65–88.

    CAS  Article  Google Scholar 

  77. Soltis, P. S., Soltis, D. E., Savolainen, V., Crane, P. R., Barraclough, T. G., et al. (2002). Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils. Proceedings of the National Academy of Sciences, 99(7), 4430–4435.

    CAS  Article  Google Scholar 

  78. Stamatakis, A., Hoover, P., & Rougement, J. (2008). A rapid bootsrap algorithm for RaxML web servers. Systematic Biology, 57(5), 758–771.

    PubMed  Article  Google Scholar 

  79. Stebbins, G. L. (1981). Coevolution of grasses and herbivores. Annals of the Missouri Botanical Garden, 68(1), 75–86.

    Article  Google Scholar 

  80. Steppan, S. J., Akhverdyan, M. R., Lyapunova, E. A., Fraser, D. G., Vorontsov, N. N., Hoffmann, R. S., et al. (1999). Molecular phylogeny of the marmots (Rodentia: Sciuridae): Tests of evolutionary and biogeographic hypotheses. Systematic Biology, 48(4), 715–734.

    CAS  PubMed  Article  Google Scholar 

  81. Stewart, C. B., & Disotell, T. R. (1998). Primate evolution—In and out of Africa. Current Biology, 8(21), 747–748.

    Google Scholar 

  82. Storer, J. E. (1993). Additions to the mammalian palaeofauna of Saskatchewan. Modern Geology, 18(4), 475–487.

    Google Scholar 

  83. Sutton, J. F., & Korth, W. W. (1995). Rodents (Mammalia) from the Barstovian (Miocene) Anceney local fauna, Montana. Annals of the Carnegie Museum, 64(4), 267–314.

    Google Scholar 

  84. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., et al. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    CAS  PubMed  Article  Google Scholar 

  85. Thorington, R. W., & Hoffmann, R. S. (2005). Famly Sciuridae. In D. Wilson & D. Reeder (Eds.), Mammal species of the world: A taxonomic and geographic reference (3rd ed., pp. 745–2142). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  86. Thorington, R. W., Jr., Koprowski, J. L., Steele, M. A., & Whatton, J. F. (2012). Squirrels of the world (i–vii, pp. 1–459). Baltimore: The John Hopkins University Press.

  87. Vander, W. S. B. (1990). Food hoarding in animals. Chicago & London: University of Chicago Press.

    Google Scholar 

  88. Vianey-Liaud, M. (1974). Palaeosciurus goti nov. sp., ecureuil terrestre de l’oligocene moyen du Quercy. Donnees nouvelles sur l’apparition des sciurides en Europe. Annales de paléontologie, 60(1), 101–124.

    Google Scholar 

  89. Webb, S. D. (1977). A history of savanna vertebrates in the New World. (Part 1: North America). Annual Review of Ecology and Systematics, 8, 355–380.

    Article  Google Scholar 

  90. Webb, S. D. (1984). Ten million years of mammal extinctions in North America. In P. Martin & R. Klein (Eds.), Quaternary extinctions (pp. 189–210). Tucson: University of Arizona Press.

    Google Scholar 

  91. Winkler, A. J., Denys, C., & Avery, D. M. (2010). Rodentia. In L. Werdelin & W. Sanders (Eds.), Cenozoic mammals of Africa (pp. 261–304). Berkeley, Los Angeles, London: University of California Press.

    Google Scholar 

  92. Yu, Y., Harris, A. J., & He, X. J. (2010). S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution, 56(2), 848–850.

    PubMed  Article  Google Scholar 

  93. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693.

    CAS  PubMed  Article  Google Scholar 

  94. Zhang, Q., Xia, L., Kimura, Y., Shenbrot, G., Zhang, Z. Q., Ge, D. Y., et al. (2013). Tracing the origin and diversification of Dipodoidea (Order: Rodentia): Evidence from fossil record and molecular phylogeny. Evolutionary Biology, 40(1), 32–44.

    Article  Google Scholar 

  95. Ziegler, R., & Fahlbusch, V. (1986). Kleinsauger-Faunen aus der basalen Oberen Susswasser-Molasse Niederbayerns. Zitteliana, 14, 3–58.

    Google Scholar 

Download references

Acknowledgments

We deeply appreciate the contributors to the Paleobiology database and Genbank for making information publicly available, in particular, Drs. John Alroy, Alan Turner, Scott Steppan, Antoinette Piaggio, Greg Spicer, Richard Harrison et al. for their great contribution in this field. We appreciate Dr. Douglas Chesters for his great help in language and Prof. Alfried P. Vogler for his kind help during the final revision. We thank Prof. Benedikt Hallgrimsson and three anonymous reviewers for their constructive suggestions in improvement of this manuscript. Our research is sponsored by Grants from the Natural Science Foundation of China (No: 31101629, 31272289, 31172065, J1210002) and a Grant (Y229YX5105) from the Key Laboratory of Zoological Systematics and Evolution of the Chinese Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Q. S. Yang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ge, D.Y., Liu, X., Lv, X.F. et al. Historical Biogeography and Body Form Evolution of Ground Squirrels (Sciuridae: Xerinae). Evol Biol 41, 99–114 (2014). https://doi.org/10.1007/s11692-013-9250-7

Download citation

Keywords

  • Xerinae
  • Phylogeny
  • Evolution
  • Historical biogeography
  • Body form