Skip to main content
Log in

Estimating the Dynamics of Sexual Selection in Changing Environments

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Measuring sexual selection in changing environments is challenging, as the targets and mechanisms of selection can vary with the environment. Here, we present the results of an unusually comprehensive study of the influence of human-disturbed habitat structure on sexual selection in the threespine stickleback Gasterosteus aculeatus. We included all episodes of sexual selection, used molecular parentage assignments, and applied several metrics of sexual selection. The results show that the influence of altered habitat structure on sexual selection dynamics is more complex than previously thought, with the influence varying among selection episodes and male groups. Increased habitat structure relaxed the opportunity for sexual selection across episodes, but incorrect conclusions were reached if the analysis was restricted to resource-holding males or based on mating success. A novel finding, revealed by the parentage analysis, is a reduction in sneak fertilization in disturbed environments. This relaxed the opportunity for sexual selection as sneaking had increased the skew in mating success in less structured habitats, because of nesting males with a high mating success sneaking the most. Thus, the influence of environmental change on an alternative reproductive behavior amplified alterations in sexual selection. This emphasizes the need to consider more hidden processes than previously done when investigating how human disturbances modify sexual selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahnesjö, I., Kvarnemo, C., & Merilaita, S. (2001). Using potential reproductive rates to predict mating competition among individuals qualified to mate. Behavioral Ecology, 12(4), 397–401.

    Article  Google Scholar 

  • Arnold, S. J., & Duvall, D. (1994). Animal mating systems—a synthesis based on selection theory. American Naturalist, 143(2), 317–348.

    Article  Google Scholar 

  • Arnold, S. J., & Wade, M. J. (1984a). On the measurement of natural and sexual selection: Applications. Evolution, 38, 720–734.

    Article  Google Scholar 

  • Arnold, S. J., & Wade, M. J. (1984b). On the measurements of natural and sexual selection: Theory. Evolution, 38, 709–719.

    Article  Google Scholar 

  • Balenger, S. L., Johnson, L. S., & Masters, B. S. (2009). Sexual selection in a socially monogamous bird: Male color predicts paternity success in the mountain bluebird, Sialia currucoides. Behavioral Ecology and Sociobiology, 63(3), 403–411.

    Article  Google Scholar 

  • Bateman, A. J. (1948). Intra-sexual selection in Drosophila Heredity, 2, 349–368.

    CAS  Google Scholar 

  • Birkhead, T. R., & Møller, A. P. (1998). Sperm competition and sexual selection. London: Academic Press.

    Google Scholar 

  • Bitton, P. P., O’Brien, E. L., & Dawson, R. D. (2007). Plumage brightness and age predict extrapair fertilization success of male tree swallows, tachycineta bicolor. Animal Behaviour, 74, 1777–1784.

    Article  Google Scholar 

  • Bonduriansky, R., & Rowe, L. (2003). Interactions among mechanisms of sexual selection on male body size and head shape in a sexually dimorphic fly. Evolution, 57(9), 2046–2053.

    PubMed  Google Scholar 

  • Boughman, J. W., Rundle, H. D., & Schluter, D. (2005). Parallel evolution of sexual isolation in sticklebacks. Evolution, 59(2), 361–373.

    PubMed  Google Scholar 

  • Candolin, U. (2000). Increased signalling effort when survival prospects decrease: Male–male competition ensures honesty. Animal Behaviour, 60, 417–422.

    Article  PubMed  Google Scholar 

  • Candolin, U. (2004a). Effects of algae cover on egg acquisition in male three-spined stickleback. Behaviour, 141, 1389–1399.

    Article  Google Scholar 

  • Candolin, U. (2004b). Opposing selection on a sexually dimorphic trait through female choice and male competition in a water boatman. Evolution, 58(8), 1861–1864.

    PubMed  Google Scholar 

  • Candolin, U. (2009). Population responses to anthropogenic disturbance: Lessons from three-spined stickleback Gasterosteus aculeatus in eutrophic habitats. Journal of Fish Biology, 75(8), 2108–2121.

    Article  PubMed  CAS  Google Scholar 

  • Candolin, U., Engström-Öst, J., & Salesto, T. (2008). Human-induced eutrophication enhances reproductive success through effects on parenting ability in sticklebacks. Oikos, 117(3), 459–465.

    Article  Google Scholar 

  • Candolin, U., & Heuschele, J. (2008). Is sexual selection beneficial during adaptation to environmental change? Trends in Ecology & Evolution, 23(8), 446–452.

    Article  Google Scholar 

  • Candolin, U., Salesto, T., & Evers, M. (2007). Changed environmental conditions weaken sexual selection in sticklebacks. Journal of Evolutionary Biology, 20, 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Candolin, U., & Voigt, H. R. (2003). Size-dependent selection on arrival times in sticklebacks: Why small males arrive first. Evolution, 57, 862–871.

    PubMed  Google Scholar 

  • Cockburn, A., Osmond, H. L., & Double, M. C. (2008). Swingin’ in the rain: Condition dependence and sexual selection in a capricious world. Proceedings of the Royal Society B-Biological Sciences, 275(1635), 605–612.

    Article  Google Scholar 

  • Cothran, R. D., Stiff, A. R., Jeyasingh, P. D., & Relyea, R. A. (2012). Eutrophication and predation risk interact to affect sexual trait expression and mating success. Evolution, 66(3), 708–719.

    Article  PubMed  Google Scholar 

  • Croshaw, D. A. (2010). Quantifying sexual selection: A comparison of competing indices with mating system data from a terrestrially breeding salamander. Biological Journal of the Linnean Society, 99(1), 73–83.

    Article  Google Scholar 

  • Downhower, J. F., Blumer, L. S., & Brown, L. (1987). Opportunity for selection—an appropriate measure for evaluating variation in the potential for selection. Evolution, 41(6), 1395–1400.

    Article  Google Scholar 

  • Duval, E. H., & Kempenaers, B. (2008). Sexual selection in a lekking bird: The relative opportunity for selection by female choice and male competition. Proceedings of the Royal Society B-Biological Sciences, 275(1646), 1995–2003.

    Article  Google Scholar 

  • Emlen, S. T., & Oring, L. W. (1977). Ecology, sexual selection and the evolution of mating systems. Science, 197, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Engström-Öst, J., & Candolin, U. (2007). Human-induced water turbidity alters selection on sexual displays in sticklebacks. Behavioral Ecology, 18, 393–398.

    Article  Google Scholar 

  • Fairbairn, D. J., & Wilby, A. E. (2001). Inequality of opportunity: Measuring the potential for sexual selection. Evolutionary Ecology Research, 3(6), 667–686.

    Google Scholar 

  • Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics. Essex: Longman.

    Google Scholar 

  • Fitze, P. S., & Le Galliard, J. F. (2011). Inconsistency between different measures of sexual selection. American Naturalist, 178(2), 256–268.

    Article  PubMed  Google Scholar 

  • Garant, D., Sheldon, B. C., & Gustafsson, L. (2004). Climatic and temporal effects on the expression of secondary sexual characters: Genetic and environmental components. Evolution, 58(3), 634–644.

    PubMed  Google Scholar 

  • Griffith, S. C., Owens, I. P. F., & Thuman, K. A. (2002). Extra pair paternity in birds: A review of interspecific variation and adaptive function. Molecular Ecology, 11(11), 2195–2212.

    Article  PubMed  CAS  Google Scholar 

  • Hereford, J., Hansen, T. F., & Houle, D. (2004). Comparing strengths of directional selection: How strong is strong? Evolution, 58(10), 2133–2143.

    PubMed  Google Scholar 

  • Heuschele, J., & Candolin, U. (2010). Reversed parasite-mediated selection in sticklebacks from eutrophied habitats. Behavioral Ecology and Sociobiology, 64(8), 1229–1237.

    Article  Google Scholar 

  • Heuschele, J., Mannerla, M., Gienapp, P., & Candolin, U. (2009). Environment-dependent use of mate choice cues in sticklebacks. Behavioral Ecology, 20(6), 1223–1227.

    Article  Google Scholar 

  • Heuschele, J., Salminen, T., & Candolin, U. (2012). Habitat change influences mate search behaviour in three-spined sticklebacks. Animal Behaviour, 83(2012), 1505–1510.

    Article  Google Scholar 

  • Holland, B., & Rice, W. R. (1999). Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proceedings of the National Academy of Sciences of the United States of America, 96(9), 5083–5088.

    Article  PubMed  CAS  Google Scholar 

  • Hrdy, S. B. (1979). Infanticide among animals—review, classification, and examination of the implications for the reproductive strategies of females. Ethology and Sociobiology, 1(1), 13–40.

    Article  Google Scholar 

  • Hunt, J., Breuker, C. J., Sadowski, J. A., & Moore, A. J. (2009). Male-male competition, female mate choice and their interaction: Determining total sexual selection. Journal of Evolutionary Biology, 22(1), 13–26.

    PubMed  Google Scholar 

  • Janzen, F. J., & Stern, H. S. (1998). Logistic regression for empirical studies of multivariate selection. Evolution, 52(6), 1564–1571.

    Article  Google Scholar 

  • Jennions, M. D., Kokko, H., & Klug, H. (2012). The opportunity to be misled in studies of sexual selection. Journal of Evolutionary Biology, 25, 591–598.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A. G. (2009). On the opportunity for sexual selection, the Bateman gradient and the maximum intensity of sexual selection. Evolution, 63(7), 1673–1684.

    Article  PubMed  Google Scholar 

  • Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5), 1099–1106.

    Article  PubMed  Google Scholar 

  • Klug, H., Heuschele, J., Jennions, M. D., & Kokko, H. (2010a). The mismeasurement of sexual selection. Journal of Evolutionary Biology, 23(3), 447–462.

    PubMed  CAS  Google Scholar 

  • Klug, H., Lindström, K., & Kokko, H. (2010b). Who to include in measures of sexual selection is no trivial matter. Ecology Letters, 13(9), 1094–1102.

    Article  PubMed  Google Scholar 

  • Kokko, H., Klug, H., & Jennions, M. D. (2012). Unifying cornerstones of sexual selection: Operational sex ratio, Bateman gradient, and the scope for competitive investment. Ecology Letters, 15, 1340–1351.

    Article  PubMed  Google Scholar 

  • Krakauer, A. H., Webster, M. S., Duval, E. H., Jones, A. G., & Shuster, S. M. (2011). The opportunity for sexual selection: Not mismeasured, just misunderstood. Journal of Evolutionary Biology, 24(9), 2064–2071.

    PubMed  CAS  Google Scholar 

  • Kvarnemo, C., & Ahnesjö, I. (1996). The dynamics of operational sex ratios and competition for mates. Trends in Ecology & Evolution, 11(10), 404–408.

    Article  CAS  Google Scholar 

  • Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37, 1210–1226.

    Article  Google Scholar 

  • Largiader, C. R., Fries, V., & Bakker, T. C. M. (2001). Genetic analysis of sneaking and egg-thievery in a natural population of the three-spined stickleback (Gasterosteus aculeatus L.). Heredity, 86, 459–468.

    Article  PubMed  CAS  Google Scholar 

  • Lengagne, T. (2008). Traffic noise affects communication behaviour in a breeding anuran, Hyla arborea. Biological Conservation, 141(8), 2023–2031.

    Article  Google Scholar 

  • Long, T. A. F., Agrawal, A. F., & Rowe, L. (2012). The effect of sexual selection on offspring fitness depends on the nature of genetic variation. Current Biology, 22(3), 204–208.

    Article  PubMed  CAS  Google Scholar 

  • Mehlis, M., Bakker, T. C. M., Engqvist, L., & Frommen, J. G. (2010). To eat or not to eat: Egg-based assessment of paternity triggers fine-tuned decisions about filial cannibalism. Proceedings of the Royal Society B-Biological Sciences, 277(1694), 2627–2635.

    Article  Google Scholar 

  • Møller, A. P. (2004). Protandry, sexual selection and climate change. Global Change Biology, 10(12), 2028–2035.

    Article  Google Scholar 

  • Moore, A. J., & Moore, P. J. (1999). Balancing sexual selection through opposing mate choice and male competition. Proceedings of the Royal Society of London Series B-Biological Sciences, 266(1420), 711–716.

    Article  Google Scholar 

  • Oliveira, R., Taborsky, M., & Brockmann, H. J. (2008). Alternative reproductive tactics: An integrative approach. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Reichard, M., Ondrackova, M., Bryjova, A., Smith, C., & Bryja, J. (2009). Breeding resource distribution affects selection gradients on male phenotypic traits: Experimental study on lifetime reproductive success in the bitterling fish (Rhodeus amarus). Evolution, 63(2), 377–390.

    Article  PubMed  Google Scholar 

  • Rowland, W. J. (1989). The effects of body size, aggression and nuptial coloration on competition for territories in male threespine sticklebacks, Gasterosteus aculeatus. Animal Behaviour, 132, 282–289.

    Article  Google Scholar 

  • Rundus, A. S., Sullivan-Beckers, L., Wilgers, D. J., & Hebets, E. A. (2011). Females are choosier in the dark: environment-dependent reliance on courtship components and its impact on fitness. Evolution, 65(1), 268–282.

    Article  PubMed  Google Scholar 

  • Schradin, C., & Lindholm, A. K. (2011). Relative fitness of alternative male reproductive tactics in a mammal varies between years. Journal of Animal Ecology, 80(5), 908–917.

    Article  PubMed  Google Scholar 

  • Seehausen, O., Alphen, J. J. M., & Witte, F. (1997). Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science, 277, 1808–1811.

    Article  CAS  Google Scholar 

  • Sefc, K. M., Mattersdorfer, K., Sturmbauer, C., & Koblmuller, S. (2008). High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence. Molecular Ecology, 17(10), 2531–2543.

    Article  PubMed  CAS  Google Scholar 

  • Shuker, D. M. (2010). Sexual selection: Endless forms or tangled bank? Animal Behaviour, 79(3), E11–E17.

    Article  Google Scholar 

  • Shuster, S. M. (2009). Sexual selection and mating systems. Proceedings of the National Academy of Sciences of the United States of America, 106, 10009–10016.

    Article  PubMed  CAS  Google Scholar 

  • Shuster, S. M., & Wade, M. J. (2003). Mating systems and strategies. Princeton, NJ.: Princeton University Press.

    Google Scholar 

  • Soulsbury, C. D. (2010). Genetic patterns of paternity and testes size in mammals. PLoS ONE, 5(3), A152–A157.

    Article  Google Scholar 

  • Sundin, J., Berglund, A., & Rosenqvist, G. (2010). Turbidity hampers mate choice in a pipefish. Ethology, 116(8), 713–721.

    Google Scholar 

  • Sutherland, W. J. (1985). Chance can produce a sex difference in variance in mating success and explain Batemans data. Animal Behaviour, 33, 1349–1352.

    Article  Google Scholar 

  • Taborsky, M. (1998). Sperm competition in fish: ‘Bourgeois’ males and parasitic spawning. Trends in Ecology & Evolution, 13, 222–227.

    Article  CAS  Google Scholar 

  • Uller, T., & Olsson, M. (2008). Multiple paternity in reptiles: Patterns and processes. Molecular Ecology, 17(11), 2566–2580.

    Article  PubMed  Google Scholar 

  • van den Assem, J. (1967). Territoriality in the threespine stickleback, Gasterosteus aculeatus L.: An experimental study in intra-specific competition. Behaviour, 16, 1–164.

    Google Scholar 

  • Vlieger, L., & Candolin, U. (2009). How not to be seen: Does eutrophication influence stickleback sneaking behaviour? Journal of Fish Biology, 75, 2163–2174.

    Article  PubMed  CAS  Google Scholar 

  • Wade, M. J. (1979). Sexual selection and variance in reproductive success. American Naturalist, 114(5), 742–747.

    Article  Google Scholar 

  • Wade, M. J., & Shuster, S. M. (2004). Sexual selection: Harem size and the variance in male reproductive success. American Naturalist, 164(4), E83–E89.

    Article  PubMed  Google Scholar 

  • Wade, M. J., & Shuster, S. M. (2010). Bateman (1948): Pioneer in the measurement of sexual selection. Heredity, 105(6), 507–508.

    Article  PubMed  CAS  Google Scholar 

  • Weatherhead, P. J., & Boag, P. T. (1995). Pair and extra-pair mating success relative to male quality in red-winged blackbirds. Behavioral Ecology and Sociobiology, 37(2), 81–91.

    Article  Google Scholar 

  • Weir, L. K., Grant, J. W. A., & Hutchings, J. A. (2011). The influence of operational sex ratio on the intensity of competition for mates. American Naturalist, 177(2), 167–176.

    Article  PubMed  Google Scholar 

  • Wong, B. B. M., Candolin, U., & Lindström, K. (2007). Environmental deterioration compromises socially-enforced signals of male quality in three-spined sticklebacks. American Naturalist, 170, 184–189.

    Article  PubMed  Google Scholar 

  • Wootton, R. J. (1973). Effect of size of food ration on egg-production in female 3-spined sticklebacks, Gasterosteus aculeatus. Journal of Fish Biology, 5(1), 89–96.

    Article  Google Scholar 

  • Wootton, R. J. (1976) The biology of the sticklebacks: Academic Press.

  • Wootton, R. J. (1984). The functional biology of sticklebacks. London: Croom Helm.

    Book  Google Scholar 

  • Young, K. A., Genner, M. J., Haesler, M. P., & Joyce, D. A. (2010). Sequential female assessment drives complex sexual selection on bower shape in a cichlid fish. Evolution, 64(8), 2246–2253.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tiina Salesto and Miia Mannerla for assistance, Steven Shuster for advice on the calculation of opportunity for sexual selection metrics, Hannu Mäkinen for advice on the microsatellite primers, and Tvärminne Zoological Station for providing working facilities. The experimental procedures were approved by the Animal Care Committee of the University of Helsinki (86-06) and by the National Animal Experiment Board in Finland (STH421A). The work was funded by the Academy of Finland and the University of Helsinki to UC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrika Candolin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candolin, U., Vlieger, L. Estimating the Dynamics of Sexual Selection in Changing Environments. Evol Biol 40, 589–600 (2013). https://doi.org/10.1007/s11692-013-9234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-013-9234-7

Keywords

Navigation