Complexity by Subtraction

Abstract

The eye and brain: standard thinking is that these devices are both complex and functional. They are complex in the sense of having many different types of parts, and functional in the sense of having capacities that promote survival and reproduction. Standard thinking says that the evolution of complex functionality proceeds by the addition of new parts, and that this build-up of complexity is driven by selection, by the functional advantages of complex design. The standard thinking could be right, even in general. But alternatives have not been much discussed or investigated, and the possibility remains open that other routes may not only exist but may be the norm. Our purpose here is to introduce a new route to functional complexity, a route in which complexity starts high, rising perhaps on account of the spontaneous tendency for parts to differentiate. Then, driven by selection for effective and efficient function, complexity decreases over time. Eventually, the result is a system that is highly functional and retains considerable residual complexity, enough to impress us. We try to raise this alternative route to the level of plausibility as a general mechanism in evolution by describing two cases, one from a computational model and one from the history of life.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Adamowicz, S. J., Purvis, A., & Wills, M. A. (2008). Increasing morphological complexity in multiple parallel lineages of the Crustacea. Proceedings of the National Academy of Sciences, 105, 4786–4791.

    Article  CAS  Google Scholar 

  2. Alroy, J. (2001). Understanding the dynamics of trends within evolving lineages. Paleobiology, 26, 319–329.

    Article  Google Scholar 

  3. Boerlijst, M., & Hogeweg, P. (1991). Self-structuring and selection: Spiral waves as a substrate for prebiotic evolution. In C. G. Langton, C. Taylor, J. D. Farmer & S. Rasmussen (Eds.), Artifial life II (pp. 55–276). Reading: Addison-Wesley.

    Google Scholar 

  4. Bonner, J. T. (1988). The evolution of complexity by means of natural selection. Princeton: Princeton University Press.

    Google Scholar 

  5. Brown, T. A., & McBurnett, M. D. (1996). The emergence of political elites. In M. Coombs & M. Sulcoski (Eds.), Proceedings of the International Workshop on Control Mechanisms for Complex Systems (pp. 143–161).

  6. Buchholtz, E. A., & Wolkovich, E. H. (2005). Vertebral osteology and complexity in Lagenorhynchus acutus. Marine Mammal Science, 21, 411–428.

    Article  Google Scholar 

  7. Burks, A. W. (Ed) (1970). Essays on cellular automata. Urbana: University of Illinois Press.

    Google Scholar 

  8. Cisne, J. L. (1974). Evolution of the world fauna of aquatic free-living arthropods. Evolution, 28, 337–366.

    Article  Google Scholar 

  9. Crutchfield, J. P., & Hanson, J. E. (1993). Turbulent pattern bases for cellular automata. Physica D, 69, 279–301.

    Article  Google Scholar 

  10. Crutchfield, J. P., & Mitchell, M. (1995). The evolution of emergent computation. Proceedings of the National Academy of Sciences, 92(23), 10742–10746.

    Article  CAS  Google Scholar 

  11. Darwin, C. (1859). On the origin of species. London: J. Murray.

    Google Scholar 

  12. Darwin, C. (1862). On the various contrivances by which British and foreign orchids are fertilised by insects, and on the food effects of intercrossing. London: J. Murray.

    Google Scholar 

  13. Das, R., Mitchell, M., Crutchfield, J. P. (1994). A genetic algorithm discovers particle-based computation in cellular automata. In Y. Davidor, H. P. Schwefel & R. Manner (Eds.), Parallel problem solving from nature—PPSN III (pp. 344–353). Berlin: Springer.

    Google Scholar 

  14. Das, R., Crutchfield, J. P., Mitchell, M., & Hanson, J. E. (1995). Evolving globally synchronized cellular automata. In L. J. Eshelman (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms (pp. 336–343). Los Altos: Morgan Kaufmann.

    Google Scholar 

  15. Dembski, W. A., & Ruse, M. (Eds.) (2004). Debating design. Cambridge: Cambridge University Press.

    Google Scholar 

  16. Doolittle, W. F. (2012). A ratchet for protein complexity. Nature, 481, 270–271.

    CAS  PubMed  Google Scholar 

  17. Ermentrout, G. B., & Edelstein-Keshet, L. (1993). Cellular automata approaches to biological modeling. Journal of Theoretical Biology, 160, 97–133.

    Article  CAS  PubMed  Google Scholar 

  18. Esteve-Altava, B., Marugán-Lobón, J., Botella, H., & Rasskin-Gutman, D. (2012). Structural constraints in the evolution of the tetrapod skull complexity: Willistons Law revisited using network models. Evolutionary Biology. doi:10.1007/s11692-012-9200-9.

  19. Finnigan, G. C., Hanson-Smith, V., Stevens, T. H., & Thornton, J. W. (2012). Evolution of increased complexity in a molecular machine. Nature, 481, 360–364.

    CAS  PubMed  Google Scholar 

  20. Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223(120), 123.

    Google Scholar 

  21. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York: W. H. Freeman.

    Google Scholar 

  22. Goldberg, D. E. (1989) Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  23. Gray, M. W., Lukeš, J., Archibald, J. M., Keeling, P. J., & Doolittle, W. F. (2010). Irremediable complexity? Science, 330, 920–921.

    CAS  Google Scholar 

  24. Gregory, W. K. (1934). Polyisomerism and anisomerism in cranial and dental evolution among vertebrates. Proceedings of the National Academy of Sciences, 20, 1–9.

    Article  CAS  Google Scholar 

  25. Gregory, W. K. (1935). Reduplication in evolution. Quarterly Review of Biology, 10, 272–290.

    Article  Google Scholar 

  26. Hanson, J. E., & Crutchfield, J. P. (1992). The attractor-basin portrait of a cellular automaton. Journal of Statistical Physics, 66(5/6), 1415–1462.

    Article  Google Scholar 

  27. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press (2nd edn., MIT Press, 1992).

  28. Hordijk, W. (1999). Dynamics, emergent computation, and evolution in cellular automata. PhD thesis, Albuquerque, NM, USA: University of New Mexico.

  29. Hordijk, W. (2013). The EvCA project: A brief history. Complexity (To appear).

  30. Hordijk, W., Crutchfield, J. P., & Mitchell, M. (1996). Embedded particle computation in evolved cellular automata. In T. Toffoli, M. Biafore & J. Leão (Eds.), Proceedings of the Conference on Physics and Computation (pp. 153–158). Cambridge: New England Complex Systems Institute.

    Google Scholar 

  31. Hordijk, W., Crutchfield, J. P., & Mitchell, M. (1998). Mechanisms of emergent computation in cellular automata. In A. E. Eiben, T. Bäck, M. Schoenauer & H. P. Schwefel (Eds.), Parallel Problem Solving from Nature–V (pp. 613–622). New York: Springer.

    Google Scholar 

  32. Kauffman, S. A. (1996). At home in the universe. Oxford: Oxford University Press.

    Google Scholar 

  33. Lynch, M. (2007). The fraily of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences, 104, 8597–8604.

    Article  CAS  Google Scholar 

  34. Manneville, P., Boccara, N., Vichniac, G. Y., & Bidaux, R. (1990). Cellular automata and modeling of complex physical systems, volume 46 of Springer Proceedings in Physics. New York: Springer.

  35. Marcus, J. M. (2005). A partial solution to the C-value paradox. Lecture Notes in Computer Science, p 3678.

  36. Margolus, N., Toffoli, T., & Vichniac, G. (1986). Cellular-automata supercomputers for fluid-dynamics modeling. Physical Review Letters, 56(16), 1694–1696.

    Article  PubMed  Google Scholar 

  37. McShea, D. W. (1992). A metric for the study of evolutionary trends in the complexity of serial structures. Biological Journal of the Linnean Society, 45, 39–55.

    Article  Google Scholar 

  38. McShea, D. W. (1993). Evolutionary changes in the morphological complexity of the mammalian vertebral column. Evolution, 47, 730–740.

    Article  Google Scholar 

  39. McShea, D. W. (1994). Mechanisms of large-scale evolutionary trends. Evolution, 48, 1747–1763.

    Article  Google Scholar 

  40. McShea, D. W. (1996). Metazoan complexity and evolution: Is there a trend? Evolution, 50, 477–492.

    Article  Google Scholar 

  41. McShea, D. W. (2000). Functional complexity in organisms: Parts as proxies. Biology and Philosophy, 15, 641–668.

    Article  Google Scholar 

  42. McShea, D. W. (2001). The hierarchical structure of organisms: A scale and documentation of a trend in the maximum. Paleobiology, 27, 405–423.

    Article  Google Scholar 

  43. McShea, D. W. (2002). A complexity drain on cells in the evolution of multicellularity. Evolution, 56, 441–452.

    PubMed  Google Scholar 

  44. McShea, D. W., & Brandon, R. N. (2010). Biologys first law. Chicago: University of Chicago Press.

    Google Scholar 

  45. McShea, D. W., & Venit, E. P. (2001). What is a part? In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 259–284). New York: Academic Press.

    Google Scholar 

  46. Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge: MIT Press.

    Google Scholar 

  47. Mitchell, M. (1998). Computation in cellular automata: A selected review. In T. Gramss, S. Bornholdt, M. Gross, M. Mitchell & T. Pellizzari (Eds.), Nonstandard computation. Weinheim: VCH Verlagsgesellschaft.

    Google Scholar 

  48. Mitchell, M., Hraber, P. T., & Crutchfield, J. P. (1993). Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems, 7, 89–130.

    Google Scholar 

  49. Mitchell, M., Crutchfield, J. P., & Hraber, P. T. (1994a). Dynamics, computation, and the “edge of chaos”: A re-examination. In G. A. Cowan, D. Pines & D. Melzner (Eds.), Complexity: Metaphors, Models, and Reality (pp. 497–513). Reading: Addison-Wesley. Santa Fe Institute Studies in the Sciences of Complexity, Proceedings Volume 19.

  50. Mitchell, M., Crutchfield, J. P., & Hraber, P. T. (1994b). Evolving cellular automata to perform computations: Mechanisms and impediments. Physica D, 75, 361–391.

    Article  Google Scholar 

  51. Packard, N. H. (1988). Adaptation toward the edge of chaos. In J. A. S. Kelso, A. J. Mandell & M. F. Shlesinger (Eds.), Dynamic patterns in complex systems (pp. 293–301). Singapore: World Scientic.

    Google Scholar 

  52. Sidor, C. A. (2001). Simplification as a trend in synapsid cranial evolution. Evolution, 55, 1142–1419.

    Google Scholar 

  53. Simon, P. M., & Nagel, K. (1998). Simplified cellular automaton model for city traffic. Physical Review E, 58(2), 1286–1295.

    Article  CAS  Google Scholar 

  54. Stoltzfus, A. (1999). On the possibility of constructive neutral evolution. Journal of Molecular Evolution, 49, 169–181.

    Article  CAS  PubMed  Google Scholar 

  55. Tamayo, P., & Hartman, H. (1988). Cellular automata, reaction-diffusion systems and the origin of life. In C. G. Langon (Ed.), Artifial life (pp. 105–124). Reading: Addison-Wesley.

    Google Scholar 

  56. Taylor, J. S., & Raes, J. (2004). Duplication and divergence: The evolution of new genes and old ideas. Annual Review of Genetics, 38, 615–643.

    Article  CAS  PubMed  Google Scholar 

  57. Valentine, J. W., Collins, A. G., & Meyer, C. P. (1994). Morphological complexity increase in metazoans. Paleobiology, 20, 131–142.

    Google Scholar 

  58. Van Valen, L. (1962). A study of fluctuating asymmetry. Evolution, 16, 125–142.

    Article  Google Scholar 

  59. von Neumann, J. (1966). Theory of self-reproducing automata. In A. W. Burks (Ed.), Urbana: University of Illinois Press.

  60. Vichniac, G. Y. (1984). Simulating physics with cellular automata. Physica D, 10, 96–116.

    Article  Google Scholar 

  61. Wagner, P. J. (1996). Testing the underlying patterns of active trends. Evolution, 50, 990–1017.

    Article  Google Scholar 

  62. Weber, B. H., & Depew, D. J. (2004). Darwinism, design, and complex systems dynamics. In W. A. Dembski & M. Ruse (Eds.), Debating design (pp. 173–190). Cambridge: Cambridge University Press.

    Google Scholar 

  63. Williston, S. W. (1914). Water reptiles of the past and present. Chicago: University of Chicago Press.

    Google Scholar 

Download references

Acknowledgments

The main ideas described in this paper originated at a catalysis meeting at the National Evolutionary Synthesis Center (NESCent) in Durham, NC, USA. They were developed further and finalized into the current paper during a subsequent short-term research visit of WH at, and supported by, NESCent. We thank Robert Brandon for suggesting the apt and evocative phrase “complexity by subtraction.” Finally, one of us (DM) would like to thank Benedikt Hallgrimsson for discussions decades ago, discussions that turned out to be foundational in the development of the ZFEL.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wim Hordijk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McShea, D.W., Hordijk, W. Complexity by Subtraction. Evol Biol 40, 504–520 (2013). https://doi.org/10.1007/s11692-013-9227-6

Download citation

Keywords

  • Evolution
  • Complexity
  • Constructive neutral evolution
  • Irreducible complexity
  • ZFEL