Advertisement

Evolutionary Biology

, Volume 40, Issue 3, pp 450–460 | Cite as

Adaptive Significance and Long-Term Survival of Asexual Lineages

  • Thierry Lodé
Synthesis Paper

Abstract

Important questions remain about the long-term survival and adaptive significance of eukaryotic asexual lineages. Numerous papers dealing with sex advantages still continued to compare parthenogenetic populations versus sexual populations arguing that sex demonstrates a better fitness. Because asexual lineages do not possess any recombination mechanisms favoring rapid changes in the face of severe environmental conditions, they should be considered as an evolutionary dead-end. Nevertheless, reviewing literature dealing with asexual reproduction, it is possible to draw three stimulating conclusions. (1) Asexual reproduction in eukaryotes considerably differs from prokaryotes which experience recombination but neither meiosis nor syngamy. Recombination and meiosis would be a driving force for sexual reproduction. Eukaryotes should therefore be considered as a continuum of sexual organisms that are more or less capable (and sometimes incapable) of sexual reproduction. (2) Rather than revealing ancestral eukaryotic forms, most known lineages of asexual eukaryotes have lost sex due to a genomic conflict affecting their sexual capacity. Thus, it could be argued that hybridization is a major cause of their asexuality. Asexuality may have evolved as a reproductive mechanism reducing conflict within organisms. (3) It could be proposed that, rather than being generalists, parthenogenetic hybrid lineages could be favored when exploiting peculiar restricted ecological niches, following the “frozen niche variation” model. Although hybrid events may result in sex loss, probably caused by genomic conflict, asexual hybrids could display new original adaptive traits, and the rapid colonization of environments through clonal reproduction could favor their long-term survival, leading to evolutionary changes and hybrid speciation. Examination of the evolutionary history of asexual lineages reveals that evolutionary processes act through transitional stages in which even very small temporary benefits may be enough to counter the expected selective disadvantages.

Keywords

Frozen niche variation Hybrid Parthenogenesis Red Queen Sexual conflict Speciation 

Notes

Acknowledgments

I would like to thank David Crews and two anonymous referees for helpful suggestions.

References

  1. Agrawal, A. F. (2009). Differences between selection on sex versus recombination in red queen models with diploid hosts. Evolution, 63, 2131–2141.CrossRefPubMedGoogle Scholar
  2. Angers, B., & Schlosser, I. J. (2007). The origin of Phoxinus eos-neogaeus unisexual hybrids. Molecular Ecology, 16, 4562–4571.CrossRefPubMedGoogle Scholar
  3. Arkhipova, I., & Meselson, M. (2004). Deleterious transposable elements and the extinction of asexuals. BioEssays, 27, 76–85.CrossRefGoogle Scholar
  4. Arnold, M. L. (1996). Natural hybridization and evolution. New York: Oxford University Press.Google Scholar
  5. Baker, H. G., & Stebbins, G. I. (1965). The genetics of colonizing species. New York: Academic Press.Google Scholar
  6. Barraclough, T. G., Birky, C. W., Jr, & Burt, A. (2003). Diversification in sexual and asexual organisms. Evolution, 57, 2166–2172.PubMedGoogle Scholar
  7. Barton, N. H., & Charlesworth, B. (1998). Why sex and recombination? Science, 281, 1986–1990.CrossRefPubMedGoogle Scholar
  8. Bell, G. (1993). The sexual nature of eukaryote genomes. Journal of Heredity, 84, 351–359.PubMedGoogle Scholar
  9. Bernstein, H., Byerly, H. C., Hopf, F. A., & Michod, R. E. (1984). Origin of sex. Journal of Theoretical of Biology, 110, 323–351.CrossRefGoogle Scholar
  10. Beukeboom, L., & Vrijenhoek, R. C. (1998). Evolutionary genetics and ecology of sperm-dependent parthenogenesis. Journal of Evolutionary Biology, 11, 755–782.CrossRefGoogle Scholar
  11. Birky, W. C., Jr. (2004). Bdelloid rotifer revisited. Proceedings of the National Academy of Sciences USA, 101, 2651–2652.CrossRefGoogle Scholar
  12. Bjork, A., & Pitnik, S. (2006). Intensity of sexual selection along the anisogamy-isogamy continuum. Nature, 441, 742–745.CrossRefPubMedGoogle Scholar
  13. Brown, S. G., Kwan, S., & Shero, S. (1995). The parasitic theory of sexual reproduction, parasitism in unisexual and bisexual geckos. Proceedings of the Royal Society of London B, 260, 317–320.CrossRefGoogle Scholar
  14. Bruvo, R., Adolfsson, S., Symonova, R., Lamatsch, D. K., Schön, I., Jokela, J., et al. (2011). Few parasites, and no evidence for Wolbachia infections in a freshwater ostracod inhabiting temporary ponds. Biological Journal of the Linnaean Society of London, 102, 208–216.CrossRefGoogle Scholar
  15. Butlin, R. (2002). The costs and benefits of sex, new insights from old asexual lineages. Nature Reviews of Genetics, 3, 311–317.CrossRefGoogle Scholar
  16. Butlin, R. K., & Griffiths, H. I. (1993). Ageing without sex? Nature, 364, 680.CrossRefGoogle Scholar
  17. Carman, J. G. (1997). Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biological Journal of the Linnaean Society of London, 61, 51–94.CrossRefGoogle Scholar
  18. Carman, J. G. (2007). Do duplicate genes cause apomixes? In E. Hörandl, U. Grossniklaus, P. J. van Dijk, & T. F. Sharbel (Eds.), Apomixis, evolution, mechanisms and perspectives (pp. 63–91). Liechtenstein: Gantner Rugell.Google Scholar
  19. Cavalier-Smith, T. (2002). Origins of the machinery of recombination and sex. Heredity, 8, 125–141.CrossRefGoogle Scholar
  20. Chaplin, J. A., Havel, J. E., & Hebert, P. D. N. (1994). Sex and ostracods. Trends in Ecology & Evolution, 9, 435–439.CrossRefGoogle Scholar
  21. Christin, P. A., Edwards, E. J., Besnard, G., Boxall, S. F., Gregory, R., Kellogg, E. A., et al. (2012). Adaptive evolution of C4 Photosynthesis through recurrent lateral gene transfer. Current Biology, 22, 445–449.CrossRefPubMedGoogle Scholar
  22. Clay, K., & Kover, P. X. (1996). The Red Queen hypothesis and plant/pathogen interactions. Annuals Reviews of Phytopathology, 34, 29–50.CrossRefGoogle Scholar
  23. Cooper, T. F. (2007). Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biology, 59, e225.CrossRefGoogle Scholar
  24. Coyne, J. A., & Orr, H. A. (1993). Further evidence against meiotic-drive models of hybrid sterility. Evolution, 47, 685–687.CrossRefGoogle Scholar
  25. Crews, D. (2012). The (bi)sexual brain. EMBO Reports, 13, 779–784.CrossRefPubMedGoogle Scholar
  26. Crews, D., & Bull, J. J. (2009). Mode and tempo in environmental sex determination in vertebrates. Seminar Cell Development Biology, 20, 251–255.CrossRefGoogle Scholar
  27. Crews, D., Grassman, M., & Lindzey, J. (1986). Behavioral facilitation of reproduction in sexual and unisexual whiptail lizards. Proceedings of the National Academy of Sciences USA, 83, 9547–9550.CrossRefGoogle Scholar
  28. Cullum, A. (2000). Phenotypic variability of physiological traits in populations of sexual and asexual whiptail lizards (genus Cnemidophorus). Evolutionary Ecology Research, 2, 841–855.Google Scholar
  29. Czárán, T. L., & Hoesktra, R. F. (2004). Evolution of sexual asymmetry. BMC Evolutionary Biology, 4, 34.CrossRefPubMedGoogle Scholar
  30. de Queiroz, K. (2005). Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences USA, 102, 6600–6607.CrossRefGoogle Scholar
  31. de Visser, J. A. G. M., & Elena, S. F. (2007). The evolution of sex: Empirical insights into the roles of epistasis and drift. Nature Reviews of Genetics, 8, 139–149.CrossRefGoogle Scholar
  32. Domes, K., Norton, R. A., Maraun, M., & Scheu, S. (2007). Revolution of sexuality breaks Dollo’s law. Proceedings of the National Academy of Sciences USA, 104, 7139–7144.CrossRefGoogle Scholar
  33. Dujardin, M., & Hanna, W. W. (1989). Developing apomictic pearl millet characterization of a BC3 plant. Journal of Genetic Breeding, 43, 145–151.Google Scholar
  34. Dunthorn, M., & Katz, L. (2010). Secretive ciliates and putative asexuality in microbial eukaryotes. Trends in Microbiology, 18, 183–188.CrossRefPubMedGoogle Scholar
  35. Dyer, P. S., & Paoletti, M. (2005). Reproduction in Aspergillus fumigatus, sexuality in a supposedly asexual species? Medical Mycology Supplement, 43, S7–S14.CrossRefGoogle Scholar
  36. Egel, R. (2000). Fission yeast on the brink of meiosis. BioEssays, 22, 854–860.CrossRefPubMedGoogle Scholar
  37. Felsenstein, J. (1974). The evolutionary advantage of recombination. Genetics, 78, 737–756.PubMedGoogle Scholar
  38. Fontaneto, D., Herniou, E. A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., et al. (2007). Independently evolving species in asexual bdelloid rotifers. PLoS Biology, 5, e87.CrossRefPubMedGoogle Scholar
  39. Genner, M. J., & Turner, G. F. (2012). Ancient hybridization and phenotypic novelty within Lake Malawi’s Cichlid fish radiation. Molecular Biology and Evolution, 29, 195–206.CrossRefPubMedGoogle Scholar
  40. Ghiselli, F., Milani, L., Scali, V., & Passamonti, M. (2007). The Leptynia hispanica species complex (Insecta Phasmida), polyploidy, parthenogenesis, hybridization and more. Molecular Ecology, 16, 4256–4268.CrossRefPubMedGoogle Scholar
  41. Gilbert, C., Hernandez, S. S., Flores-Benabib, J., Smith, E. N., & Feschotte, C. (2012). Rampant horizontal transfer of SPIN transposons in Squamate Reptiles. Molecular Biology and Evolution, 29, 503–515.CrossRefPubMedGoogle Scholar
  42. Goddard, M. R., Godfray, H. C. J., & Burt, A. (2005). Sex increases the efficacy of natural selection in experimental yeast populations. Nature, 434, 636–640.CrossRefPubMedGoogle Scholar
  43. Goldberg, E. E., & Igic, B. (2008). On phylogenetic tests of irreversible evolution. Evolution, 62, 2727–2741.CrossRefPubMedGoogle Scholar
  44. Guillon, J. M., & Raquin, C. (2002). Environmental sex determination in the genus Equisetum: Sugars induce male sex expression in cultured gametophytes. International Journal of Plant Science, 163, 825–830.CrossRefGoogle Scholar
  45. Haag, C. R., Sakwinska, O., & Ebert, D. (2003). Test of synergistic interactions between infection and inbreeding in Daphnia magna. Evolution, 57, 777–783.PubMedGoogle Scholar
  46. Hadany, L., & Feldman, M. W. (2005). Evolutionary traction, the cost of adaptation and the evolution of sex. Journal of Evolutionary Biology, 18, 309–314.CrossRefPubMedGoogle Scholar
  47. Hakoyama, H., Nishimura, T., Matsubara, N., & Iguchi, K. (2001). Difference in parasite load and nonspecific immune reaction between sexual and gynogenetic forms of Carassius auratus. Biological Journal of the Linnaean Society of London, 72, 401–407.CrossRefGoogle Scholar
  48. Haldane, J. B. S. (1922). Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics, 12, 101–109.CrossRefGoogle Scholar
  49. Halkett, F., Simon, J.-C., & Balloux, F. (2005). Tackling the population genetics of clonal and partially clonal organisms. Trends in Ecology & Evolution, 20, 194–201.CrossRefGoogle Scholar
  50. Hamilton, W. D. (1980). Sex versus non-sex versus parasite. Oikos, 35, 282–290.CrossRefGoogle Scholar
  51. Hamilton, W. D., Axelrod, R., & Tanese, R. (1990). Sexual reproduction as an adaptation to resist parasites (a review). Proceedings of the National Academy of Sciences USA, 87, 3566–3573.CrossRefGoogle Scholar
  52. Hanley, K. A., Fisher, R. N., & Case, T. J. (1995). Lower mite infestations in an asexual gecko compared with its sexual ancestors. Evolution, 49, 418–426.CrossRefGoogle Scholar
  53. Heethoff, M., Domes, K., Laumann, M., Maraun, M., Norton, R. A., & Scheu, S. (2007). High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). Journal of Evolutionary Biology, 20, 392–402.CrossRefPubMedGoogle Scholar
  54. Henry, L., Schwander, T., & Crespi, B. J. (2012). Deleterious mutation accumulation in asexual Timema stick insects. Molecular Biology and Evolution, 29, 401–408.CrossRefPubMedGoogle Scholar
  55. Hillis, D. M. (2007). Asexual evolution, can species exist without sex? Current Biology, 17, R543–R544.CrossRefPubMedGoogle Scholar
  56. Hörandl, E., Cosendai, A.-C., & Temsch, E. (2008). Understanding the geographic distributions of apomictic plants, a case for a pluralistic approach. Plant Ecology and Diversity, 2, 309–320.CrossRefGoogle Scholar
  57. Howard, R. S., & Lively, C. M. (1994). Parasitism, mutation accumulation and the maintenance of sex. Nature, 367, 554–557.CrossRefPubMedGoogle Scholar
  58. Johnson, S. J. (2000). Populations structure, parasitism and survivorship of sexual and asexual autodiploid parthenogenetic Campeloma limum. Evolution, 54, 167–175.PubMedGoogle Scholar
  59. Judson, O. P., & Normark, B. B. (1996). Ancient asexual scandals. Trends in Ecology & Evolution, 11, A41–A46.CrossRefGoogle Scholar
  60. Kearney, M. (2005). Hybridization, glaciation and geographical parthenogenesis. Trends in Ecology & Evolution, 20, 495.CrossRefGoogle Scholar
  61. Kearney, M., & Shine, R. (2005). Lower fecundity in parthenogenetic geckos than sexual relatives in the Australian arid zone. Journal of Evolutionary Biology, 18, 609–618.CrossRefPubMedGoogle Scholar
  62. Keightley, P. D., & Eyre-Walker, A. (2000). Deleterious mutations and the evolution of sex. Science, 290, 331–333.CrossRefPubMedGoogle Scholar
  63. Kondrashov, A. S. (1993). Classification of hypotheses on the advantage of amphimixis. Journal of Heredity, 84, 372–387.PubMedGoogle Scholar
  64. Kondrashov, A. S. (1994). The asexual ploidy cycle and the origin of sex. Nature, 370, 213–216.CrossRefPubMedGoogle Scholar
  65. Ladle, R. J. (1992). Parasites and sex, catching the red queen. Trends in Ecology & Evolution, 7, 405–408.CrossRefGoogle Scholar
  66. Lamatsch, D. K., Lampert, K. P., Fischer, P., Epplen, J. T., Nanda, I., Schmid, M., et al. (2007). Automictic reproduction in interspecific hybrids of poeciliid fish. Current Biology, 17, 1948–1953.CrossRefPubMedGoogle Scholar
  67. Lattorff, H. M. G., Moritz, R. F. A., & Fuchs, S. (2005). A single locus determines thelytokous parthenogenesis of laying honeybee workers (Apis mellifera capensis). Heredity, 94, 533–537.CrossRefPubMedGoogle Scholar
  68. Lawrence, J. G. (1999). Gene transfer, speciation, and the evolution of bacterial genomes. Current Opinion Microbiology, 2, 519–523.CrossRefGoogle Scholar
  69. Lesbarrères, D. (2011). Sex or no sex, reproduction is not the question. BioEssays, 33, 818.CrossRefPubMedGoogle Scholar
  70. Lively, C. M. (2009). The maintenance of sex, host–parasite coevolution with density-dependent virulence. Journal of Evolutionary Biology, 22, 2086–2093.CrossRefPubMedGoogle Scholar
  71. Lively, C. M., Craddock, C., & Vrijenhoek, R. C. (1990). Red queen hypothesis supported by parasitism in sexual and clonal fish. Nature, 344, 864–867.CrossRefGoogle Scholar
  72. Lively, C. M., & Jokela, J. (2002). Temporal and spatial distributions of parasites and sex in a freshwater snail. Evolutionary Ecological Research, 4, 219–226.Google Scholar
  73. Lively, C. M., & Lloyd, D. G. (1990). The cost of biparental sex under individual selection. American Naturalist, 135, 489–500.CrossRefGoogle Scholar
  74. Lodé, T. (2011). Sex is not a solution for reproduction, the libertine bubble theory. BioEssays, 33, 419–422.CrossRefPubMedGoogle Scholar
  75. Lodé, T. (2012a). Sex and the origin of genetic exchanges. Trends in Evolutionary Biology, 2012(4), e1.Google Scholar
  76. Lodé, T. (2012b). For quite a few chromosomes more: The origin of eukaryotes. Journal of Molecular Biology, 423, 135–142.CrossRefPubMedGoogle Scholar
  77. Lodé, T. (2012c). Have sex or not? Lessons from bacteria. Sexual Development, 6, 325–328.CrossRefPubMedGoogle Scholar
  78. Loxdale, H. D., & Lushai, G. (2003). Rapid changes in clonal lines, the death of a ‘sacred cow. Biological Journal of the Linnaean Society, 79, 3–16.CrossRefGoogle Scholar
  79. Lunt, D. H. (2008). Genetic tests of ancient asexuality in root knot nematodes reveal 536 recent hybrid origins. BMC Evolutionary Biology, 8, 194.CrossRefPubMedGoogle Scholar
  80. Lushai, G., Loxdale, H. D., & Allen, J. A. (2003). The dynamic clonal genome and its adaptive potential. Biological Journal of the Linnaean Society of London, 79, 193–208.CrossRefGoogle Scholar
  81. Lynch, M. (1984). Destabilizing hybridization, general-purpose genotypes, and geographic parthenogenesis. Quaternary Review of Biology, 59, 257–290.CrossRefGoogle Scholar
  82. Mable, K. (2007). Sex in the postgenomic era. Trends in Ecology & Evolution, 2, 559–561.CrossRefGoogle Scholar
  83. Mallet, J. (2007). Hybrid speciation. Nature, 446, 279–283.CrossRefPubMedGoogle Scholar
  84. Marin, I., & Baker, B. S. (1998). The evolutionary dynamics of sex determination. Science, 281, 1990–1994.CrossRefPubMedGoogle Scholar
  85. Mark-Welch, J. L., Mark-Welch, D. B., & Meselson, M. (2004). Cytogenetic evidence for asexual evolution of bdelloid rotifers. Proceedings of the National Academy of Sciences USA, 101, 1618–1621.CrossRefGoogle Scholar
  86. Mark-Welch, D., & Meselson, M. (2000). Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science, 288, 1211–1215.CrossRefPubMedGoogle Scholar
  87. Martens, K., Rossetti, G., & Home, D. J. (2003). How ancient are ancient asexuals? Proceedings of the National Academy of Sciences USA, 270, 723–729.Google Scholar
  88. Martin, W. F. (2011). Early evolution without a tree of life. Biology Direct, 6, 36.CrossRefPubMedGoogle Scholar
  89. Matheos, M., & Vrijenhoek, R. C. (2007). Ancient versus reticulate origin of hemiclonal lineage. Evolution, 56, 985–992.Google Scholar
  90. Maynard-Smith, J. (1978). The evolution of sex. Cambridge, UK: Cambridge University Press.Google Scholar
  91. McDaniel, L. D., Young, E., Delaney, J., Ruhnau, F., Ritchie, K. B., & Paul, J. H. (2010). High frequency of horizontal gene transfer in the oceans. Science, 330, 50.CrossRefPubMedGoogle Scholar
  92. McDermott, S. R., & Noor, M. A. F. (2010). The role of meiotic drive in hybrid male sterility. Philosophical Transactions of the Royal Society B, 365, 1265–1272.CrossRefGoogle Scholar
  93. Morran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C., I. I., & Lively, C. M. (2011). Running with the red queen, host-parasite coevolution selects for biparental sex. Science, 333, 216–218.CrossRefPubMedGoogle Scholar
  94. Muller, H. J. (1964). The relation of mutation to mutational advance. Mutation Research, 1, 2–9.CrossRefGoogle Scholar
  95. Normark, B. B., Judson, O. P., & Moran, N. A. (2003). Genomic signatures of ancient asexual lineages. Biological Journal of the Linnaean Society of London, 79, 69–84.CrossRefGoogle Scholar
  96. Nygren, A., & Sundberg, P. (2003). Phylogeny and evolution of reproductive modes in Autolytinae Syllidae, Annelida. Molecular Phylogeny and Evolution, 29, 235–249.CrossRefGoogle Scholar
  97. Ochman, H., Lerat, E., & Daubin, V. (2005). Examining bacterial species under the specter of gene transfer and exchange. Proceedings of the National Academy of Sciences USA, 102, 6595–6599.CrossRefGoogle Scholar
  98. Otto, S. P. (2009). The evolutionary enigma of sex. American Naturalist, 174, S1–S14.CrossRefPubMedGoogle Scholar
  99. Pagano, A., Dubois, A., Lesbarrères, D., & Lodé, T. (2003). Frog alien species, a way for genetic invasion? Comptes-Rendus Biologies, 326, 85–92.CrossRefGoogle Scholar
  100. Pagano, A., Lesbarrères, D., O’hara, R., Crivelli, A., Veith, M., Lodé, T., et al. (2008). Geographical and ecological distributions of frog hemiclones suggest occurrence of both “General Purpose Genotype” and “Frozen Niche Variation” clones. Journal of Zoological Systems in Evolutionary Research, 46, 162–168.CrossRefGoogle Scholar
  101. Pal, C., Macia, M., Oliver, A., Schacher, I., & Buckling, A. (2007). Coevolution with viruses drives the evolution of bacterial mutation rates. Nature, 450, 1079–1081.CrossRefPubMedGoogle Scholar
  102. Parker, E. D, Jr, & Selander, R. K. (1976). The organization of genetic diversity in the parthenogenetic lizard Cnemidophorus tesselatus. Genetics, 84, 791–805.PubMedGoogle Scholar
  103. Parnell, J. J., Rompato, G., Latta IV, L. C., Pfrender, M. E., Van Nostrand, J. D., He, Z., Zhou, J., Andersen, G., Champine, P., Balasubramanian, G., & Weimer, B. C. (2010). Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS One, 5, e12919. doi: 10.1371/journal.pone.0012919.
  104. Passamonti, M., Mantovani, B., & Scali, V. (2004). Phylogeny and karyotype evolution of the Iberian Leptynia attenuata species complex (Insecta Phasmatodea). Molecular Phylogeny and Evolution, 30, 87–96.CrossRefGoogle Scholar
  105. Penny, D. (1985). The evolution of meiosis and sexual reproduction. Biological Journal of the Linnaean Society of London, 25, 209–220.CrossRefGoogle Scholar
  106. Phadnis, N., & Orr, H. A. (2009). A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science, 323, 376–379.CrossRefPubMedGoogle Scholar
  107. Presgraves, D. C. (2007). Speciation genetics, epistasis, conflict and the origin of species. Current Biology, 17, R125–R127.CrossRefPubMedGoogle Scholar
  108. Quarin, C. L., Espinoza, F., Martinez, E. J., Pessino, S. C., & Bovo, O. A. (2001). A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reproduction, 13, 243–249.CrossRefGoogle Scholar
  109. Ramesh, M. A., Malik, S., & Logsdon, J. M. (2005). A phylogenomic inventory of meiotic genes, evidence for sex in Giardia and an early eukaryotic origin of meiosis. Current Biology, 15, 185–191.PubMedGoogle Scholar
  110. Redfield, R. (2001). Do bacteria have sex? Nature Reviews of Genetics, 2, 634–639.CrossRefGoogle Scholar
  111. Rice, W. R. (2000). Dangerous liaisons. Proceedings of the National Academy of Sciences USA, 97, 12953–12955.CrossRefGoogle Scholar
  112. Rice, W. R. (2002). Experimental tests of the adaptive significance of sexual recombination. Nature Reviews of Genetics, 3, 241–251.CrossRefGoogle Scholar
  113. Rieseberg, L., & Willis, J. H. (2007). Plant speciation. Science, 317, 910–914.CrossRefPubMedGoogle Scholar
  114. Robinson, M. T., Weeks, A. R., & Hoffmann, A. A. (2002). Geographic patterns of clonal diversity in the earth mite species Penthaleus major with particular emphasis on species margins. Evolution, 56, 1160–1167.PubMedGoogle Scholar
  115. Salathé, P., & Ebert, D. (2003). The effects of parasitism and inbreeding on the competitive ability in Daphnia magna, evidence for synergistic epistasis. Journal of Evolutionary Biology, 16, 976–985.CrossRefPubMedGoogle Scholar
  116. Schaefer, I., Domes, K., Heethoff, M., Schneider, K., Schön, I., Norton, R. A., et al. (2006). No evidence for the “Meselson effect” in parthenogenetic oribatid mites (Oribatida, Acari). Journal of Evolutionary Biology, 19, 184–193.CrossRefPubMedGoogle Scholar
  117. Schartl, M., Wilde, B., Schlupp, I., & Parzefall, J. (1995). Evolutionary origin of a parthenoform, the Amazon Molly Poecilia formosa, on the basis of a molecular genealogy. Evolution, 49, 827–835.CrossRefGoogle Scholar
  118. Schley, D., Doncaster, C., & Slutkin, T. (2004). Population models of sperm-dependent parthenogenesis. Journal of Theoretical Biology, 229, 559–572.CrossRefPubMedGoogle Scholar
  119. Schmeller, D. S., O’Hara, R., & Kokko, H. (2005). Male adaptive stupidity, male mating pattern in hybridogenetic frogs. Evolutionary Ecological Research, 7, 1039–1050.Google Scholar
  120. Schmidt, B. R. (1993). Are hybridogenetic frogs cyclical parthenogens? Trends in Ecology & Evolution, 8, 271–273.CrossRefGoogle Scholar
  121. Schön, I., Butlin, R. K., Griffiths, H. I., & Martens, K. (1998). Slow evolution in an ancient asexual ostracod. Proceedings of the Royal Society of London B, 265, 235–242.CrossRefGoogle Scholar
  122. Schön, I., & Martens, K. (2003). No slave to sex. Proceedings of the Royal Society of London B, 270, 827–833.CrossRefGoogle Scholar
  123. Schultz, R. J. (1971). Special adaptive problems associated with unisexual fishes. American Zoologist, 11, 351–360.Google Scholar
  124. Schurko, A. M., & Logsdon, J. M, Jr. (2008). Using a meiosis detection toolkit to investigate ancient asexual “scandals”. BioEssays, 30, 579–589.CrossRefPubMedGoogle Scholar
  125. Schwander, T., & Crespi, B. J. (2008). Multiple direct transitions from sexual reproduction to apomictic parthenogenesis in Timema stick insects. Evolution, 63, 84–103.CrossRefPubMedGoogle Scholar
  126. Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19, 198–207.CrossRefGoogle Scholar
  127. Simon, J. C., Delmotte, F., Rispe, C., & Crease, T. (2003). Phylogenetic relationships between parthenogens and their sexual relatives, the possible routes to parthenogenesis in animals. Biological Journal of the Linnaean Society of London, 79, 151–163.CrossRefGoogle Scholar
  128. Slobodchikoff, C. N., & Daly, H. V. (1971). Systematic and evolutionary implications of parthenogenesis in the Hymenoptera. American Zoologist, 11, 273–282.Google Scholar
  129. Smith, R. J., Kamiya, T., & Horne, D. J. (2006). Living males of the ‘ancient asexual’ Darwinulidae (Ostracoda, Crustacea). Proceedings of the National Academy of Sciences USA, 273, 1569–1578.Google Scholar
  130. Sun, S., & Heitman, J. (2011). Is sex necessary? BMC Biology, 9, 56.CrossRefPubMedGoogle Scholar
  131. Suomalainen, E. (1962). Significance of Parthenogenesis in the Evolution of Insects. Annual Review of Entomology, 7, 349–366.CrossRefGoogle Scholar
  132. Suomalainen, E., Saura, E., & Lokki, J. (1976). Evolution of parthenogenetic insects. Evolutionary Biology, 9, 209–257.CrossRefGoogle Scholar
  133. Tobler, M., & Schlupp, I. (2005). Parasites in sexual and asexual mollies Poecilia, Poeciliidae, Teleostei, a case for the Red Queen? Biology Letters, 1, 166–168.CrossRefPubMedGoogle Scholar
  134. Uyenoyama, M. K. (1984). On the evolution of parthenogenesis, A genetic representation of the “cost of meiosis”. Evolution, 38, 87–102.CrossRefGoogle Scholar
  135. Venditti, P. C., Meade, A., & Pagel, M. (2010). Phylogenies reveal new interpretation of speciation and the Red Queen. Nature, 463, 349–352.CrossRefPubMedGoogle Scholar
  136. Vorburger, C. (2001). Heterozygous fitness effects of clonally transmitted genomes in waterfrogs. Journal of Evolutionary Biology, 14, 602–610.CrossRefGoogle Scholar
  137. Vorburger, C., Sunnucks, P., & Ward, S. A. (2003). Explaining the coexistence of asexuals with their sexual progenitors, no evidence for general-purpose genotypes in obligate parthenogens of the peach-potato aphid, Myzus persicae. Ecology Letters, 6, 1091–1098.CrossRefGoogle Scholar
  138. Vos, M. (2009). Why do bacteria engage in homologous recombination? Trends in Microbiology, 17, 226–232.CrossRefPubMedGoogle Scholar
  139. Vrijenhoek, R. C. (1994). Unisexual fish, model systems for studying ecology and evolution. Annual Review of Ecological System, 25, 71–96.CrossRefGoogle Scholar
  140. Vrijenhoek, R. C. (1998). Animal clones and diversity. Are natural clones generalists or specialists? BioScience, 48, 617–628.CrossRefGoogle Scholar
  141. Watson, R. A., Weinreich, D. M., & Wakeley, J. (2011). Genomes structure and the benefit of sex. Evolution, 65, 523–536.CrossRefPubMedGoogle Scholar
  142. Wenseleers, T., & Van Oystaeyen, A. (2011). Unusual modes of reproduction in social insects: Shedding light on the evolutionary paradox of sex. BioEssays, 33, 927–937.CrossRefPubMedGoogle Scholar
  143. Wilkinson, G. S., & Fry, C. L. (2001). Meiotic drive alters sperm competitive ability in stalk-eyed flies. Proceedings of the Royal Society of London B, 268, 2559–2564.CrossRefGoogle Scholar
  144. Williams, G. C. (1975). Sex and evolution. Princeton: Princeton University Press.Google Scholar
  145. Woolley, S. C., Sakata, J. T., & Crews, D. (2004). Tracing the Evolution of Brain and Behavior Using Two Related Species of Whiptail Lizards: Cnemidophorus uniparens and Cnemidophorus inornatus. Institute for Laboratory Animal Research Journal, 45, 46–53.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.UMR-CNRS 6552 ETHOSUniversité de Rennes 1RennesFrance

Personalised recommendations