Skip to main content
Log in

Selfish Genes and Plant Speciation

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

A key to understand the process of speciation is to uncover the genetic basis of hybrid incompatibilities. Selfish genetic elements (SGEs), DNA sequences that can spread in a population despite being associated with a fitness cost to the individual organism, make up the largest component in many plant genomes, but their role in the genetics of speciation has long been controversial. However, the realization that many organisms have evolved a variety of suppressor mechanisms that reduce the deleterious effects of SGEs has spurred renewed interest in their importance for speciation. The relationship between SGEs and their suppressors often results in strong selection on at least two interacting loci and this arms race therefore creates a situation where SGEs may give rise to hybrid dysgenesis due to Bateson–Dobzhansky–Muller incompatibilities (BDMIs). Here, I argue that examples of SGEs underlying BDMIs may be particularly common among plants compared to other taxa and that a focus on loci involved in genetic conflicts may be especially useful for workers interested in the genetics of plant speciation. I first discuss why the frequent mating system shifts and hybridization events in plants make for a specifically dynamic relationship between SGEs and plant host genomes. I then review some recent empirical observations consistent with SGE-induced speciation in plants. Lastly, I suggest some future directions to test fully the utility of this perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ågren, J. A., & Wright, S. I. (2011). Co-evolution between transposable elements and their hosts: A major factor in genome size evolution? Chromosome Research, 19, 777–786.

    Article  PubMed  CAS  Google Scholar 

  • Avise, J. C. (2001). Evolving genomic metaphors: A new look at the language of DNA. Science, 294, 86–87.

    Article  PubMed  CAS  Google Scholar 

  • Aziz, R. K., Breitbart, M., & Edwards, R. A. (2010). Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Research, 38, 4207–4217.

    Article  PubMed  CAS  Google Scholar 

  • Baack, E. J., Whitney, K. D., & Rieseberg, L. H. (2005). Hybridization and genome size evolution: Timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytologist, 167, 623–630.

    Article  PubMed  CAS  Google Scholar 

  • Baird, A. B., Hillis, D. M., Patton, J. C., & Bickham, J. W. (2009). Speciation by monobrachial centric fusions: A test of the model using nuclear DNA sequences from the bat genus Rhogeessa. Molecular Phylogenetics and Evolution, 50, 256–267.

    Article  PubMed  CAS  Google Scholar 

  • Barr, C. M., & Fishman, L. (2010). The nuclear component of a cytonuclear hybrid incompatibility in Mimulus maps to a cluster of pentatricopeptide repeat (PPR) genes. Genetics, 184, 455–465.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, S. C. H. (2002). The evolution of plant sexual diversity. Nature Reviews Genetics, 3, 274–284.

    Article  PubMed  CAS  Google Scholar 

  • Bateson, W. (1909). Heredity and variation in modern lights. In A. C. Seward (Ed.), Darwin and modern science (pp. 85–101). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bestor, T. H. (1999). Sex brings transposons and genomes into conflict. Genetica, 107, 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Blumenstiel, J. P. (2010). Evolutionary dynamics of transposable elements in a small RNA world. Trends in Genetics, 27, 23–31.

    Article  PubMed  CAS  Google Scholar 

  • Boutin, T. S., Le Rouzic, A., & Capy, P. (2012). How does selfing affect the dynamics of selfish transposable elements? Mobile DNA, 3, 5.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J. F. Y. (1991). Models of repression of transposition in P-M hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins. Genetics, 128, 471–486.

    PubMed  CAS  Google Scholar 

  • Brookfield, J. F. (2005). The ecology of the genome—mobile DNA elements and their hosts. Nature Reviews Genetics, 6, 128–136.

    Article  PubMed  CAS  Google Scholar 

  • Budar, F., Touzet, P., & De Paepe, R. (2003). The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica, 117, 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Burt, A., & Trivers, R. (2006). Genes in conflict: The biology of selfish genetic elements. Cambridge, MA: Belknap Press of Harvard University.

    Google Scholar 

  • Capy, P., Casperi, G., Biémont, C., & Bazin, C. (2000). Stress and transposable elements: Co-evolution or useful parasites? Heredity, 85, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Case, A. L., & Willis, J. H. (2008). Hybrid male sterility in Mimulus is associated with a geographically restricted mitochondrial rearrangement. Evolution, 62, 1026–1039.

    Article  PubMed  CAS  Google Scholar 

  • Castillo, D. M., & Moyle, L. C. (2012). Evolutionary implications of mechanistic models of TE-mediated hybrid incompatibility. International Journal of Evolutionary Biology. doi:10.1155/2012/698198.

  • Cavalier-Smith, T. (1977). Visualising jumping genes. Nature, 270, 10–12.

    Article  Google Scholar 

  • Cavalier-Smith, T. (1980). How selfish is DNA? Nature, 285, 617–618.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, D., & Ganders, F. R. (1979). The population genetics of gynodioecy with cytoplasmic-genic male-sterility. Heredity, 43, 213–218.

    Article  Google Scholar 

  • Charlesworth, B., & Langley, C. H. (1986). The evolution of self-regulated transposition of transposable elements. Genetics, 112, 359–383.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., & Langley, C. H. (1989). The population genetics of Drosophila transposable elements. Annual Reviews of Genetics, 22, 251–287.

    Article  Google Scholar 

  • Charlesworth, B., Morgan, M. T., & Charlesworth, D. (1993). The effects of deleterious mutations on neutral molecular variation. Genetics, 134, 1289–1303.

    PubMed  CAS  Google Scholar 

  • Chen, M., Ha, M., Lackey, E., Wang, J., & Chen, Z. J. (2008). RNAi of met1 reduces DNA methylation and induces genome-specific changes in gene expression and centromeric small RNA accumulation in Arabidopsis allopolyploids. Genetics, 178, 1845–1858.

    Article  PubMed  CAS  Google Scholar 

  • Correns, C. (1906). Die vererbung der Geshlechstsformen bei den gynodiöcischen Pflanzen. Berichte der Deutschen Botanischen Gesellschaft, 24, 459–474.

    Google Scholar 

  • Coyne, J. A. (1985). Genetic studies of three sibling species of Drosophila with relationship to theories of speciation. Genetics Research, 46, 169–192.

    Article  CAS  Google Scholar 

  • Coyne, J. A. (1986). Meiotic segregation and male recombination in interspecific hybrids of Drosophila. Genetics, 114, 485–494.

    PubMed  CAS  Google Scholar 

  • Coyne, J. A. (1987). Lack of response to selection for directional asymmetry in Drosophila melanogaster. Journal of Heredity, 78, 119.

    PubMed  CAS  Google Scholar 

  • Coyne, J. A. (1989). Mutation rates in hybrids between sibling species of Drosophila. Heredity (Edinb), 63, 155–162.

    Article  PubMed  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer.

    Google Scholar 

  • Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  • Dawkins, R. (1982). The extended phenotype. Oxford: Oxford University Press.

    Google Scholar 

  • de la Chaux, N., Tsuchimatsu, T., Shimizu, K. K., & Wagner, A. (2012). The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata. Mobile DNA, 3, 2.

    Article  PubMed  CAS  Google Scholar 

  • Delph, L. F., Touzet, P., & Bailey, M. F. (2007). Merging theory and mechanisms in studies of gynodioecy. Trends in Ecology & Evolution, 22, 17–24.

    Article  Google Scholar 

  • Dobzhansky, T. (1936). Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics, 21, 113–135.

    PubMed  CAS  Google Scholar 

  • Dolgin, E. S., & Charlesworth, B. (2008). The effects of recombination rate on the distribution and abundance of transposable elements. Genetics, 178, 2169–2177.

    Article  PubMed  Google Scholar 

  • Doolittle, W. F., & Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome evolution. Nature, 284, 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W. R. (1992). P elements in Drosophila melanogaster. In M. Howe & D. Berg (Eds.), Mobile DNA. Washington, DC: American Society for Microbiology Press.

    Google Scholar 

  • Finnegan, D. J. (1992). Transposable elements. In D. L. Lindsley & G. Zimm (Eds.), The Genome of Drosophila melanogaster (pp. 1096–1107). New York: Academic Press.

    Google Scholar 

  • Fishman, L., & Willis, J. H. (2006). A cytonuclear incompatibility causes anther sterility in Mimulus hybrids. Evolution, 60, 1372–1381.

    PubMed  Google Scholar 

  • Foxe, J. P., Slotte, T., Stahl, E., Neuffer, B., Hurka, H., & Wright, S. I. (2009). Recent speciation associated with the evolution of selfing in Capsella. Proceedings of the National Academy of Sciences USA, 106, 5241–5245.

    Article  CAS  Google Scholar 

  • Fujii, S., Bond, C. S., & Small, I. D. (2011). Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proceedings of the National Academy of Sciences USA, 108, 1723–1728.

    Article  CAS  Google Scholar 

  • Geurts, A. M., Collier, L. S., Geurts, J. L., Oseth, L. L., Bell, M. L., Mu, D., et al. (2006). Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. PLoS Genetics, 2, e156.

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg, L. R., Bingham, P. M., & Yoo, S. (1984). On the theory of speciation induced by transposable elements. Genetics, 107, 331–341.

    PubMed  CAS  Google Scholar 

  • Grandbastien, M. A. (1998). Activation of plant retrotransposons under stress conditions. Trends in Plant Science, 3, 181–187.

    Article  Google Scholar 

  • Greig, D. (2009). Reproductive isolation in Saccharomyces. Heredity, 102, 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, M. R., & Bentolila, S. (2004). Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell, 16, 154–169.

    Article  Google Scholar 

  • Hickey, D. A. (1982). Selfish DNA: A sexually transmitted nuclear parasite. Genetics, 101, 519–531.

    PubMed  CAS  Google Scholar 

  • Hollister, J. D., & Gaut, B. S. (2009). Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Research, 19, 1419–1428.

    Article  PubMed  CAS  Google Scholar 

  • Hollister, J. D., Smith, L. M., Guo, Y. L., Ott, F., Weigel, D., & Gaut, B. S. (2011). Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proceedings of the National Academy of Sciences USA, 108, 2322–2327.

    Article  CAS  Google Scholar 

  • Hu, T. T., Pattyn, P., Bakker, E. G., Cao, J., Cheng, J. F., Clark, R. M., et al. (2011). The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 43, 476–481.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, L. D., Atlan, A., & Bengtsson, B. (1996). Genetic conflicts. Quarterly Review of Biology, 71, 317–364.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, L. D., & Pomiankowski, P. I. (1991). Causes of sex ratio bias may account for unisexual sterility in hybrids: A new explanation of Haldane’s rule related phenomena. Genetics, 128, 841–858.

    PubMed  CAS  Google Scholar 

  • Hurst, G. D., & Werren, J. H. (2001). The role of selfish genetic elements in eukaryotic evolution. Nature Reviews Genetics, 2, 597–606.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, N. A. (2010). Hybrid incompatibility genes: Remnants of a genomic battlefield. Trends in Genetics, 26, 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Josefsson, C., Dilkes, B., & Comai, L. (2006). Parent-dependent loss of gene silencing during interspecies hybridization. Current Biology, 16, 322–1328.

    Article  CAS  Google Scholar 

  • Kaul, M. L. H. (1988). Male sterility in higher plants. Berlin: Springer.

    Book  Google Scholar 

  • Kawakami, T., Dhakal, P., Katterhenry, A. N., Heatherington, C. A., & Ungerer, M. C. (2011). Transposable element proliferation and genome expansion are rare in contemporary sunflower hybrid populations despite widespread transcriptional activity of LTR retrotransposons. Genome Biology and Evolution, 3, 156–157.

    Article  PubMed  CAS  Google Scholar 

  • Kazama, T., Nakamura, T., Watanabe, M., Sugita, M., & Toriyama, K. (2008). Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice. The Plant Journal, 55, 619–628.

    Article  PubMed  CAS  Google Scholar 

  • Kidwell, M. G. (1983). Hybrid dysgenesis in drosophila melanogaster: Factors affecting chromosomal contamination in the P-M system. Genetics, 104, 317–341.

    PubMed  CAS  Google Scholar 

  • Kidwell, M. G., Kidwell, J. F., & Sved, J. F. (1977). Hybrid dysgenesis in Drosophila melanogaster: A syndrome of aberrant traits including mutation, sterility and male recombination. Genetics, 86, 813–833.

    PubMed  CAS  Google Scholar 

  • Kidwell, M. G., & Lisch, D. (1997). Transposable elements as sources of variation in animals and plants. Proceedings of the National Academy of Science USA, 94, 7704–7711.

    Article  CAS  Google Scholar 

  • Kidwell, M. G., & Lisch, D. R. (2001). Perspective: Transposable elements, parasitic DNA, and genome evolution. Evolution, 55, 1–24.

    PubMed  CAS  Google Scholar 

  • Kolaczkowski, B., Hupalo, D. N., & Kern, A. D. (2010). Recurrent adaptation in RNA-interference genes across the Drosophila phylogeny. Molecular Biology and Evolution, 24, 1–12.

    Google Scholar 

  • Laser, K. D., & Lersten, N. R. (1972). Anatomy and cytology of microsporogenesis in cytoplasmic male sterility angiosperms. Botanical Review, 38, 435–454.

    Article  Google Scholar 

  • Levin, D. A. (2003). The cytoplasmic factor in plant speciation. Systematic Botany, 28, 5–11.

    Google Scholar 

  • Lippman, Z., Gendrel, A. V., Black, M., Vaughn, M. W., Dedhia, N., McCombie, W. R., et al. (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature, 430, 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Lisch, D. (2009). Epigenetic regulation of transposable elements in plants. Annual Review of Plant Biology, 60, 43–66.

    Article  PubMed  CAS  Google Scholar 

  • Lister, R., O’Malley, R. C., Tonti-Fillippini, J., Gregory, B. D., Millar, A. H., & Ecker, J. R. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133, 523–536.

    Article  PubMed  CAS  Google Scholar 

  • Lockton, S., & Gaut, B. S. (2010). The evolution of transposable elements in natural population of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata. BMC Evolutionary Biology, 10, 10.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., & Conery, J. S. (2003). The origins of genome complexity. Science, 302, 1401–1404.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, S. (2004). The influence of mitochondrial genetics in crop breeding strategies. Plant Breeding Reviews, 25, 115–138.

    Google Scholar 

  • Maheshwari, S., & Barbash, D. A. (2011). The genetics of hybrid incompatibilities. Annual Review of Genetics, 45, 331–355.

    Article  PubMed  CAS  Google Scholar 

  • Mallet, J. (2007). Hybridization as an invasion of the genome. Trends in Ecology & Evolution, 20, 229–237.

    Article  Google Scholar 

  • Malone, C. D., & Hannon, G. J. (2009). Small RNAs as Guardians of the Genome. Cell, 136, 656–668.

    Article  PubMed  CAS  Google Scholar 

  • Martienssen, R. A. (2010). Heterochromatin, small RNA and post-fertilization dysgenesis in allopolyploid and interploid hybrids of Arabidopsis. New Phytologist, 186, 46–53.

    Article  PubMed  CAS  Google Scholar 

  • McVean, G. T., & Charlesworth, B. (2000). The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics, 155, 929–944.

    PubMed  CAS  Google Scholar 

  • Michalak, P. (2009). Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity, 102, 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, E. A., Charlesworth, B., & Langley, C. H. (1987). A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genetics Research, 49, 31–41.

    Article  CAS  Google Scholar 

  • Morgan, M. (2001). Transposable element number in mixed mating populations. Genetics Research, 77, 261–275.

    Article  CAS  Google Scholar 

  • Muller, H. J. (1942). Isolating mechanisms, evolution and temperature. Biological Symposia, 6, 71–125.

    Google Scholar 

  • Noor, M. A. F., & Chang, A. S. (2006). Evolutionary genetics: Jumping into a new species. Current Biology, 16, R890–R892.

    Article  PubMed  CAS  Google Scholar 

  • Noor, M. A. F., & Feder, J. L. (2006). Speciation genetics: Evolving approaches. Nature Reviews Genetics, 7, 851–861.

    Article  PubMed  CAS  Google Scholar 

  • Noor, M. A., Grams, K. L., Bertucci, L. A., & Reiland, J. (2001). Chromosomal inversions and the reproductive isolation of species. Proceedings of the National Academy of Science USA, 98, 12084–12088.

    Article  CAS  Google Scholar 

  • Nordborg, M. (2000). Linkage disequilibrium, gene trees and selfing: Ancestral recombination graph with partial self-fertilization. Genetics, 154, 923–939.

    PubMed  CAS  Google Scholar 

  • Nosil, P., & Flaxman, S. M. (2010). Conditions for mutation-order speciation. Proceedings of the Royal Society Series B, 278, 399–407.

    Article  Google Scholar 

  • Nuismer, S. L., Thompson, J. N., & Gomulkiewicz, R. (1999). Gene flow and geographically structured coevolution. Proceedings of the Royal Society Series B, 266, 605–609.

    Article  Google Scholar 

  • Obbard, D. J., Jiggins, F. M., Bradshaw, N. J., & Little, T. J. (2010). Recent and recurrent selective sweeps of the antiviral RNAi gene Argonaute-2 in three species of Drosophila. Molecular Biology and Evolution, 28, 1043–1056.

    Article  PubMed  CAS  Google Scholar 

  • Olson, M. S., McCauley, D. E., & Taylor, D. R. (2005). Genetics and adaptation in structured populations: Sex ratio evolution in Silene vulgaris. Genetica, 123, 49–62.

    Article  PubMed  Google Scholar 

  • Orgel, L. E., & Crick, F. H. C. (1980). Selfish DNA: The ultimate parasite. Nature, 284, 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Östergren, G. (1945). Parasitic nature of extra fragment chromosomes. Botaniska Notiser, 2, 157–163.

    Google Scholar 

  • Pannell, J. R. (2009). Mating-system evolution: Succeedomg by celibacy. Current Biology, 19, 983–985.

    Article  CAS  Google Scholar 

  • Petrov, D. A. (2001). Evolution of genome size: New approaches to an old problem. Trends in Genetics, 17, 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, D. A., Fiston-Lavier, A. S., Lipatov, M., Lenkov, K., & Gonzalez, J. (2011). Population genomics of transposable elements in Drosophila melanogaster. Molecular Biology and Evolution, 28, 1633–1644.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, D. A., Sangster, T. A., Johnston, J. S., Hartl, D. L., & Shaw, K. L. (2000). Evidence for DNA loss as a determinant of genome size. Science, 287, 1060–1062.

    Article  PubMed  CAS  Google Scholar 

  • Presgraves, D. C. (2010). The molecular evolutionary basis of species formation. Nature Reviews Genetics, 11, 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Price, T. D. (2007). Speciation in birds. Greenwood Village, CO: Roberts and Company.

    Google Scholar 

  • Racey, D., & West, S. A. (2008). Evolution and the curriculum. Student British Medical Journal, 16, 148–149.

    Google Scholar 

  • Rebollo, R., Horard, B., Hubert, B., & Viera, C. (2010). Jumping genes and epigenetics: Towards new species. Gene, 454, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Rice, W. R., & Hostert, E. E. (1993). Laboratory experiments on speciation: What have we learned in 40 years. Evolution, 47, 1637–1653.

    Article  Google Scholar 

  • Rieseberg, L. H. (1997). Hybrid origins of plant species. Annual Review of Ecology and Systematics, 28, 359–389.

    Article  Google Scholar 

  • Rieseberg, L. H., Beckstrom-Sternberg, S. M., Liston, A., & Arias, D. (1991). Phylogenetic and systematic inferences from chloroplast DNA and isozyme variation in Helianthus sect. Helianthus (Asteraceae). Systematic Botany, 16, 50–76.

    Article  Google Scholar 

  • Rieseberg, L. H., & Blackman, B. K. (2010). Speciation genes in plants. Annals of Botany, 106, 439–455.

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg, L. H., & Willis, J. H. (2009). Plant speciation. Science, 317, 910–914.

    Article  CAS  Google Scholar 

  • Rose, R. R., & Dolittle, W. F. (1983). Molecular mechanisms of speciation. Science, 220, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323, 737–741.

    Article  PubMed  CAS  Google Scholar 

  • Schnable, P. S., & Wise, R. P. (1998). The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science, 3, 175–180.

    Article  Google Scholar 

  • Shan, X. H., Liu, Z. L., Dong, Z. Y., Wang, Y., Chen, Y., Lin, X., et al. (2005). Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Molecular Biology and Evolution, 22, 976–990.

    Article  PubMed  CAS  Google Scholar 

  • Slotkin, K. R., & Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics, 8, 272–285.

    Article  PubMed  CAS  Google Scholar 

  • Slotkin, K. R., Vaughn, M., Borges, F., Tanurdzić, M., Becker, J. D., Feijó, J. A., et al. (2009). Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell, 136, 461–472.

    Article  PubMed  CAS  Google Scholar 

  • Sobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64, 295–315.

    Article  PubMed  Google Scholar 

  • Staton, S. E., Ungerer, M. C., & Moore, R. C. (2009). The genomic organization of Ty3/Gypsy-like retrotransposons in Helianthus (Asteraceae) homoploid hybrid species. American Journal of Botany, 96, 1646–1655.

    Article  PubMed  CAS  Google Scholar 

  • Stebbins, G. L. (1950). Variation and evolution in plants. New York: Columbia University Press.

    Google Scholar 

  • Strassmann, J. E., & Queller, D. C. (2010). The social organism: Congress, parties, and committees. Evolution, 64, 605–616.

    Article  PubMed  Google Scholar 

  • Svensson, E. I. (2012). Non-ecological speciation, niche conservatism and thermal adaptation: How are they connected? Organisms Diversity and Evolution, 12, 229–240.

    Article  Google Scholar 

  • Tenaillon, M. I., Hollister, J. D., & Gaut, B. S. (2010). A triptych of the evolution of plant transposable elements. Trends in Plant Science, 15, 471–478.

    Article  PubMed  CAS  Google Scholar 

  • Tiffin, P., Olson, M. S., & Moyle, L. C. (2001). Asymmetrical crossing barriers in angiosperms. Proceedings of the Royal Society Series, 268, 861–867.

    Article  CAS  Google Scholar 

  • Ungerer, M. C., Strakosh, S. C., & Zhen, Y. (2006). Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Current Biology, 16, 872–873.

    Article  CAS  Google Scholar 

  • Uyttewaal, M., Arnal, N., Quadrado, M., Martin-Canadell, A., Vrielynck, N., Hiard, S., et al. (2008). Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer Locus for ogura cytoplasmic male sterility. Plant Cell, 20, 3331–3345.

    Article  PubMed  CAS  Google Scholar 

  • Venner, S., Feschotte, C., & Biémont, C. (2009). Dynamics of transposable elements: Towards a community ecology of the genome. Trends in Genetics, 25, 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Voytas, D. F., & Boeke, J. D. (2002). Ty1 and Ty5 of Saccharomyces cerevisiae. In N. L. Craig, R. Craige, M. Gellert, & A. M. Lambowitz (Eds.), Mobile DNA II. Washington, DC: American Society for Microbiology Press.

    Google Scholar 

  • Wang, N., Wang, H., Wang, H., Zhang, D., Wu, Y., Ou, X., et al. (2010). Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia. BMC Plant Biology, 10, 190.

    Article  PubMed  CAS  Google Scholar 

  • Weil, C. F. (2009). Too many ends: Aberrant transposition. Genes & Development, 23, 1032–1036.

    Article  CAS  Google Scholar 

  • Werren, J. H. (2011). Selfish genetic element, genetic conflicts, and evolutionary innovation. Proceedings of the National Academy of Science USA, 108, 10863–10870.

    Article  CAS  Google Scholar 

  • Werren, J. H., Nur, U., & Wu, C. I. (1988). Selfish genetic elements. Trends in Ecology & Evolution, 3, 297–302.

    Article  CAS  Google Scholar 

  • Whitney, K. D., Baack, E. J., Hamrick, J. L., Godt, M. J. W., Barringer, B. C., Bennett, M. D., et al. (2010). A role for nonadaptive processes in plant genome size evolution? Evolution, 64, 2097–2109.

    PubMed  Google Scholar 

  • Williams, G. C. (1966). Adaptation and natural selection. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wise, R. P., & Pring, D. R. (2002). Nuclear-mediated mitochondrial gene regulation and male fertility in higher plants: Light at the end of the tunnel? Proceedings of the National Academy of Science, USA, 99, 10240–10242.

    Article  CAS  Google Scholar 

  • Wright, S. I., Agrawal, N., & Bureau, T. E. (2003). Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Research, 13, 1897–1903.

    PubMed  CAS  Google Scholar 

  • Wright, S. I., Ness, R. W., Foxe, J. P., & Barrett, S. C. H. (2008). Genomic consequences of outcrossing and selfing in plants. International Journal of Plant Science, 169, 105–118.

    Article  Google Scholar 

  • Wright, S. I., & Schoen, D. J. (1999). Transposon dynamics and the breeding system. Genetica, 107, 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Yannopoulos, G., Stamatis, N., Monastirioti, M., Hatzopoulos, P., & Louis, C. (1987). hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5 MRF. Cell, 49, 487–495.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Yu, C., Pulletikurti, V., Lamb, J., Danilova, T., Weber, D. F., et al. (2009). Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Genes & Development, 23, 755–765.

    Article  CAS  Google Scholar 

  • Zilberman, D., & Henikoff, S. (2007). Genome-wide analysis of DNA methylation patterns. Development, 134, 3959–3965.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Robert J Williamson for discussions, Stephen I Wright and Jon Ågren for helpful comments on earlier versions of this review, and Utako Tanebe for help with figure design. The manuscript also benefited greatly from the comments of two anonymous reviewers. I am supported by a Junior Fellowship from Massey College.

Conflict of interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Arvid Ågren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ågren, J.A. Selfish Genes and Plant Speciation. Evol Biol 40, 439–449 (2013). https://doi.org/10.1007/s11692-012-9216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9216-1

Keywords

Navigation