Advertisement

Evolutionary Biology

, Volume 40, Issue 2, pp 194–208 | Cite as

Phylogenetic Patterns of Sexual Size Dimorphism in Turtles and Their Implications for Rensch’s Rule

  • Claudia P. Ceballos
  • Dean C. Adams
  • John B. Iverson
  • Nicole Valenzuela
Research Article

Abstract

Sexual size dimorphism (SSD) is widespread in nature and may result from selection operating differentially on males and females. Rensch’s rule, the increase of SSD with body size in male-biased-SSD species (or decrease in female-biased-SSD species), is documented in invertebrates and vertebrates. In turtles, evidence for Rensch’s rule is inconclusive and thus the forces underlying body size evolution remain obscure. Using a phylogenetic approach on 138 turtle species from 9 families, we found that turtles overall and three families follow Rensch’s rule, five families display isometry of SSD with body size, while Podocnemididae potentially follows a pattern opposite to Rensch’s rule. Furthermore, male size evolves at faster rates than female size. Female-biased-SSD appears ancestral in turtles while male-biased-SSD evolved in every polytypic family at least once. Body size follows an Ornstein–Uhlenbeck evolutionary model in both sexes and SSD types, ruling out drift as a driving process. We explored whether habitat type or sex determination might be general drivers of turtle body size evolution using a phylogenetic context. We found that males are proportionally larger in terrestrial habitats and smaller in more aquatic habitats, while the sex-determining mechanism had no influence on body size evolution. Together, our data indicate that Rensch’s rule is not ubiquitous across vertebrates, but rather is prevalent in some lineages and not driven by a single force. Instead, our findings are consistent with the hypotheses that fecundity-selection might operate on females and ecological-selection on males; and that SSD and sex-determining mechanism evolve independently in these long-lived vertebrates.

Keywords

Sexual selection Sexual size dimorphism Evolution Fecundity selection Ecological selection Adaptation Comparative method Reptiles Turtles 

Notes

Acknowledgments

We thank the undergraduate students from the Iowa Turtle Army at N.V. lab who helped during the literature review and data compilation. Funding was provided from grants: P.E.O. International Peace Scholarship to C.C., National Science Foundation (NSF) Doctoral Dissertation Improvement Grant DEB-0808047 to N.V. and C.C., NSF IOS 0743284 and associated RET and REU supplements to N.V., and support to C.C. from the Ecology, Evolution and Organismal Biology Department at Iowa State University. The Joseph Moore Museum of Natural History supported the research of JBI. The authors declare no conflict of interest.

Supplementary material

11692_2012_9199_MOESM1_ESM.doc (3.5 mb)
Supplementary material 1 (DOC 3616 kb)

References

  1. Abouheif, E., & Fairbairn, D. J. (1997). A comparative analysis of allometry for sexual size dimorphism: Assessing Rensch’s rule. American Naturalist, 149(3), 540–562.CrossRefGoogle Scholar
  2. Andersson, M. (1994). Sexual selection. New Jersey: Princeton University Press.Google Scholar
  3. Berry, J. F., & Shine, R. (1980). Sexual size dimorphism and sexual selection in turtles (order Testudines). Oecologia, 44(2), 185–191.CrossRefGoogle Scholar
  4. Bickham, J. W., Iverson, J. B., Parham, J. F., Philippen, H. D., Rhodin, A. G. J., Shaffer, H. B., et al. (2007). An annotated list of modern turtle terminal taxa with comments on areas of taxonomic instability and recent change. Chelonian Research Monographs, 4, 173–199.Google Scholar
  5. Bonner, J. T. (2006). Why size matters. Princeton, NJ: Princeton University Press.Google Scholar
  6. Bonnet, X., Delmas, V., El-Mouden, H., Slimani, T., Sterijovski, B., & Kuchling, G. (2010). Is sexual body shape dimorphism consistent in aquatic and terrestrial chelonians? Zoology, 113(4), 213–220.PubMedCrossRefGoogle Scholar
  7. Butler, M. A., & King, A. A. (2004). Phylogenetic comparative analysis: A modeling approach for adaptive evolution. American Naturalist, 164(6), 683–695.CrossRefGoogle Scholar
  8. Ceballos, C. P., & Valenzuela, N. (2011). The role of sex-specific plasticity in shaping sexual dimorphism in a long-lived vertebrate, the snapping turtle Chelydra serpentina. Evolutionary Biology, 38(2), 163–181.CrossRefGoogle Scholar
  9. Cheverud, J. M., Dow, M. M., & Leutenegger, W. (1985). The quantitative assessment of phylogenetic constraints in comparative analyses: Sexual dimorphism in body weight among primates. Evolution, 39(6), 1335–1351.CrossRefGoogle Scholar
  10. Clutton-Brock, T. H., Harvey, P. H., & Rudder, B. (1977). Sexual dimorphism, socioeconomic sex ratio and body weight in primates. Nature, 269(5631), 797–800.PubMedCrossRefGoogle Scholar
  11. Cox, R. M., Butler, M. A., & John-Alder, H. B. (2007). Chapter 4: The evolution of sexual size dimorphism in reptiles. In D. J. Fairbairn, W. U. Blanckenhorn, & T. Szekely (Eds.), Sex, size and gender roles: Evolutionary studies of sexual size dimorphism. Oxford, UK: Oxford University Press.Google Scholar
  12. Dale, J., Dunn, P. O., Figuerola, J., Lislevand, T., Szekely, T., & Whittingham, L. A. (2007). Sexual selection explains Rensch’s rule of allometry for sexual size dimorphism. Proceedings of the Royal Society of London. Series B: Biological Sciences, 274(1628), 2971–2979.PubMedCrossRefGoogle Scholar
  13. Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.CrossRefGoogle Scholar
  14. Deeming D. C, & Ferguson M. W. J. (1988). Environmental regulation of sex determination in reptiles. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 322(1208),19.Google Scholar
  15. Eastman, J. M., Alfaro, M. E., Joyce, P., Hipp, A. L., & Harmon, L. J. (2011). A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution, 65(12), 3578–3589.PubMedCrossRefGoogle Scholar
  16. Ernst, C. H., Altenburg, R. G. M., & Barbour, R. W. (2007). Turtles of the world. Available at http://wbd.etibioinformatics.nl/bis/turtles.php?menuentry=inleiding.
  17. Ewert, M. A., & Nelson, C. E. (1991). Sex determination in turtles—diverse patterns and some possible adaptive values. Copeia, 1991(1), 50–69.CrossRefGoogle Scholar
  18. Fairbairn, D. J. (1990). Factors influencing sexual size dimorphism in temperate waterstriders. American Naturalist, 136(1), 61–86.CrossRefGoogle Scholar
  19. Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics, 28, 659–687.CrossRefGoogle Scholar
  20. Fairbairn, D. J. (2005). Allometry for sexual size dimorphism: Testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. American Naturalist, 166(4), S69–S84.PubMedGoogle Scholar
  21. Fairbairn, D. J., Blanckenhorn, W. U., & Szekely, T. (2007). Sex, size and gender roles. Evolutionary studies of sexual size dimorphism. New York: Oxford University Press.CrossRefGoogle Scholar
  22. Fairbairn, D. J., & Preziosi, R. F. (1994). Sexual selection and the evolution of allometry for sexual size dimorphism in the water strider, aquarius remigis. American Naturalist, 144(1), 101–118.CrossRefGoogle Scholar
  23. Felsenstein, J. (1973). Maximum likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics, 25(5), 471–492.PubMedGoogle Scholar
  24. Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125(1), 1–15.CrossRefGoogle Scholar
  25. Frydlova, P., & Frynta, D. (2010). A test of Rensch’s rule in varanid lizards. Biological Journal of the Linnean Society, 100(2), 293–306.CrossRefGoogle Scholar
  26. Garland, T., Dickerman, A. W., Janis, C. M., & Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Systematic Biology, 42(3), 265–292.Google Scholar
  27. Garland, T., & Ives, A. R. (2000). Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist, 155(3), 346–364.CrossRefGoogle Scholar
  28. Gibbons, J. W., & Lovich, J. E. (1990). Sexual dimorphism in turtles with emphasis on the slider turtle (Trachemys scripta). Herpetological Monographs, 4, 1–29.CrossRefGoogle Scholar
  29. Gosnell, J. S., Rivera, G., & Blob, R. W. (2009). A phylogenetic analysis of sexual size dimorphism in turtles. Herpetologica, 65(1), 70–81.CrossRefGoogle Scholar
  30. Hansen, T. F. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution, 51(5), 1341–1351.CrossRefGoogle Scholar
  31. Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: investigating evolutionary radiations. Bioinformatics, 24(1), 129–131.PubMedCrossRefGoogle Scholar
  32. Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford, England; New York, USA: Oxford University Press, Inc.Google Scholar
  33. Head, G., May, R. M., & Pendleton, L. (1987). Environmental determination of sex in the reptiles. Nature, 329(6136), 198–199.CrossRefGoogle Scholar
  34. Herczeg, G., Gonda, A., & Merila, J. (2010). Rensch’s rule inverted-female-driven gigantism in nine-spined stickleback Pungitius pungitius. Journal of Animal Ecology, 79(3), 581–588.PubMedCrossRefGoogle Scholar
  35. Iverson, J. B. (1985). Geographic variation in sexual dimorphism in the mud turtle Kinosternon hirtipes. Copeia, 1985(2), 388–393.CrossRefGoogle Scholar
  36. Iverson, J. B. (1991). Phylogenetic hypotheses for the evolution of modern kinosternine turtles. Herpetological Monographs, 5, 1–27.CrossRefGoogle Scholar
  37. Iverson, J. B., Brown, R. M., Akre, T. S., Near, T. J., Le, M., Thomson, R. C., et al. (2007). In search of the tree of life for turtles. Chelonian Research Monographs, 4, 85–106.Google Scholar
  38. Joyce, W. G., & Gauthier, J. A. (2004). Palaeoecology of Triassic stem turtles sheds new light on turtle origins. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1534), 1–5.PubMedCrossRefGoogle Scholar
  39. Joyce, W. G., Micklich, N., Schaal, S. F. K., & Scheyer, T. M. (2012). Caught in the act: The first record of copulating fossil vertebrates. Biology Letters,. doi: 10.1098/rsbl.2012.0361.Google Scholar
  40. Lengkeek, W., Didderen, K., Cote, I. M., van der Zee, E. M., Snoek, R. C., & Reynolds, J. D. (2008). Plasticity in sexual size dimorphism and Rensch’s rule in Mediterranean blennies (Blenniidae). Canadian Journal of Zoology, 86(10), 1173–1178.CrossRefGoogle Scholar
  41. Lindeman, P. V. (2008). Evolution of body size in the map turtles and sawbacks (Emydidae: Deirochelyinae: Graptemys). Herpetologica, 64(1), 32–46.CrossRefGoogle Scholar
  42. Lindenfors, P., Gittleman, J. L., & Jones, K. E. (2007). Sexual size dimorphism in mammals. In: D. J. Fairbairn, W. U. Blanckenhorn & T. Szekely (Eds.), Sex, size and gender roles: Evolutionary studies of sexual size dimorphism (pp. 16–26). Oxford: Oxford University Press.Google Scholar
  43. Lovich, J. E., & Gibbons, J. W. (1992). A review of techniques for quantifying sexual size dimorphism. Growth, Development, and Aging, 56(4), 269–281.PubMedGoogle Scholar
  44. Maddison, W. P., & Maddison, D. R. (2011). Mesquite: A modular system for evolutionary analysis. Available at http://mesquiteproject.org.
  45. Near, T. J., Meylan, P. A., & Shaffer, H. B. (2005). Assessing concordance of fossil calibration points in molecular clock studies: An example using turtles. American Naturalist, 165(2), 137–146.PubMedCrossRefGoogle Scholar
  46. O’Meara, B. C., Ane, C., Sanderson, M. J., & Wainwright, P. C. (2006). Testing for different rates of continuous trait evolution using likelihood. Evolution, 60(5), 922–933.PubMedGoogle Scholar
  47. Paradis, E. (2006). Analysis of phylogenetics and evolution with R. New York: Springer.Google Scholar
  48. Polak, J., & Frynta, D. (2010). Patterns of sexual size dimorphism in cattle breeds support Rensch’s rule. Evolutionary Ecology, 24(5), 1255–1266.CrossRefGoogle Scholar
  49. Pritchard, P. C. H., & Trebbau, P. (1984). The turtles of Venezuela: Society for the study of amphibians and reptiles. Athens, OH.Google Scholar
  50. Remes, V., & Székely, T. (2010). Domestic chickens defy Rensch’s rule: Sexual size dimorphism in chicken breeds. Journal of Evolutionary Biology, 23(12), 2754–2759.PubMedCrossRefGoogle Scholar
  51. Rensch, B. (1950). Die abhangigkeit der relativen Sexualdifferenz von der Korpergrosse. Bonner Zoologische Beitraege, 1, 58–69.Google Scholar
  52. Rensch, B. (1960). Evolution above the species level. New York: Columbia University Press.Google Scholar
  53. Revell, L. J. (2010). Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution, 1(4), 319–329.CrossRefGoogle Scholar
  54. Revell, L. J. (2011). Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223.CrossRefGoogle Scholar
  55. Rohlf, F. J. (2001). Comparative methods for the analysis of continuous variables: Geometric interpretations. Evolution, 55(11), 2143–2160.PubMedGoogle Scholar
  56. Schluter, D., Price, T., Mooers, A. O., & Ludwig, D. (1997). Likelihood of ancestor states in adaptive radiation. Evolution, 51(6), 1699–1711.CrossRefGoogle Scholar
  57. Stephens, P. R., & Wiens, J. J. (2009). Evolution of sexual size dimorphisms in emydid turtles: Ecological dimorphism, Rensch’s rule, and sympatric divergence. Evolution, 63(4), 910–925.PubMedCrossRefGoogle Scholar
  58. Stillwell, R. C., Blanckenhorn, W. U., Teder, T., Davidowitz, G., & Fox, C. W. (2010). Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: From physiology to evolution. Annual Review of Entomology, 55(1), 227–245.PubMedCrossRefGoogle Scholar
  59. Stuart-Fox, D. (2009). A test of Rensch’s rule in dwarf chameleons (Bradypodion spp.), a group with female-biased sexual size dimorphism. Evolutionary Ecology, 23(3), 425–433.CrossRefGoogle Scholar
  60. Szekely, T., Freckleton, R. P., & Reynolds, J. D. (2004). Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proceedings of the National academy of Sciences of the United States of America, 101(33), 12224–12227.PubMedCrossRefGoogle Scholar
  61. Tubaro, P. L., & Bertelli, S. (2003). Female-biased sexual size dimorphism in tinamous: A comparative test fails to support Rensch’s rule. Biological Journal of the Linnean Society, 80(3), 519–527.CrossRefGoogle Scholar
  62. Valenzuela, N. (2001). Maternal effects on life-history traits in the Amazonian giant river turtle Podocnemis expansa. Journal of Herpetology, 35(3), 368–378.CrossRefGoogle Scholar
  63. Valenzuela, N., & Adams, D. C. (2011). Chromosome number and sex determination coevolve in turtles. Evolution, 65(6), 1808–1813.PubMedCrossRefGoogle Scholar
  64. Valenzuela, N., Adams, D. C., & Janzen, F. J. (2003). Pattern does not equal process: Exactly when is sex environmentally determined? American Naturalist, 161(4), 676–683.PubMedCrossRefGoogle Scholar
  65. Valenzuela, N., & Lance, V. A. (2004). Temperature dependent sex determination in vertebrates. Washington, DC: Smithsonian Books.Google Scholar
  66. van Dijk, P. P., Iverson, J. B., Shaffer, H. B., Bour, R., Rhodin, A. G. J., & Turtle Taxonomy Working Group. (2011). Turtles of the world, 2011 update: Annotated checklist of taxonomy, synonymy, distribution, and conservation status. En: Chelonian research monographs. In A. G. J. Rhodin, P. C. H. Pritchard, P. P. van Dijk, R. A. Saumure, K. A. Buhlmann, J. B. Iverson, & R. A. Mittermeier (Eds.), Conservation biology of freshwater turtles and tortoises: A compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group (pp. 000.165–000.241). Lunenburg, MA: Chelonian Research Foundation.Google Scholar
  67. Vargas-Ramirez, M., Castaño-Mora, O. V., & Fritz, U. (2008). Molecular phylogeny and divergence times of ancient South American and Malagasy river turtles (Testudines: Pleurodira: Podocnemididae). Organisms Diversity & Evolution, 8(5), 388–398.CrossRefGoogle Scholar
  68. Walker, S. P. W., & McCormick, M. I. (2009). Sexual selection explains sex-specific growth plasticity and positive allometry for sexual size dimorphism in a reef fish. Proceedings of the Royal Society B-Biological Sciences, 276(1671), 3335–3343.CrossRefGoogle Scholar
  69. Webb, G. J. W., Beal, A. M., Manolis, S. C., & Dempsey, K. E. (1987). The effects of incubation temperature on sex determination and embryonic development rate in Crocodylus johnstoni and C. porosus. In G. J. M. Webb, S. C. Manolis, & P. J. Whitehead (Eds.), Wildlife management: Crocodiles and alligators (pp. 507–531). Chipping Norton, NSW: Surrey Beatty & Sons.Google Scholar
  70. Webb, T. J., & Freckleton, R. P. (2007). Only half right: Species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLoS ONE, 2(9).Google Scholar
  71. Wolak, M. E. (2008). Rensch’s rule applies to clinal variation of body size in the argentine grasshopper Dichroplus pratensis: Correction of Bidau and Marti. Annals of the Entomological Society of America, 101(5), 801.CrossRefGoogle Scholar
  72. Young, K. A. (2005). Life-history variation and allometry for sexual size dimorphism in Pacific salmon and trout. Proceedings of the Royal Society B-Biological Sciences, 272(1559), 167–172.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Claudia P. Ceballos
    • 1
    • 2
  • Dean C. Adams
    • 2
  • John B. Iverson
    • 3
  • Nicole Valenzuela
    • 2
  1. 1.Escuela de Medicina Veterinaria, Facultad de Ciencias AgrariasUniversidad de AntioquiaMedellínColombia
  2. 2.Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesUSA
  3. 3.Department of BiologyEarlham CollegeRichmondUSA

Personalised recommendations