Advertisement

Evolutionary Biology

, Volume 40, Issue 1, pp 117–132 | Cite as

The Evolution and Paleobiogeography of Flying Squirrels (Sciuridae, Pteromyini) in Response to Global Environmental Change

  • Xuefei Lu
  • Deyan Ge
  • Lin Xia
  • Zhaoqun Zhang
  • Song Li
  • Qisen YangEmail author
Research Article

Abstract

Flying squirrels are strictly arboreal squirrels adopting a special gliding form of locomotion. This group of animals has a long history that has mirrored the vicissitude of forests. The discrepancy in the distribution between fossils and extant species indicates a mysterious evolution history requiring further exploration. This study compiles the worldwide fossils of Pteromyini to the species level in order to reproduce the spatiotemporal distribution pattern of flying squirrels and deduce the ancestral distribution according to dispersal-vicariance analysis of a phylogeny of the extant species. In addition, we reconstruct the paleoenvironmental background and find that flying squirrels probably originated in the Oligocene–Miocene transition from Europe and immediately dispersed to Asia and North America. Influenced by glaciation, CO2 reduction, geologic movements and the Paratethys retreat, the Northern Hemisphere underwent climate deterioration and grassland expansion during the late Miocene, and thus the diversity of Pteromyini dramatically decreased. The uplift of the Tibet Plateau in addition to the strengthened Asian monsoons intensified the aridity in central Asia, but brought sufficient water to the densely forested regions of South and Southeast Asia. These forests are likely both refugia and diversification center for flying squirrels during glacial periods in the Quarternary. The subsequent connection and separation events among these heterogeneous habitats has probably been a driving force in the speciation of flying squirrels. Based on this work, we predict a bleak future for the flying squirrels, one which is closely associated with the fate of forests in Asia.

Keywords

Sciuridae Pteromyini Evolution Paleobiogeography Dispersal-vicariance analysis 

Notes

Acknowledgments

We deeply appreciate the contributors to the Paleobiology database and Genbank for making information publicly available. We appreciate Dr. Douglas Chesters for his help in language. We thank editors and anonymous reviewers for their constructive suggestions in improvement of this manuscript. Our research is supported by grants from the Natural Science Foundation of China (No: 31101629, 31172065, J0930004 and 30970332) and a grant (Y229YX5105) from the Key Laboratory of Zoological Systematics and Evolution of the Chinese Academy of Sciences.

References

  1. Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J., Richards, T., et al. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297(5583), 999–1002.PubMedCrossRefGoogle Scholar
  2. Aldana Carrasco, E. J. (1992). Los esciuropteros del Mioceno de la cuenca del Valles-Penedes (Cataluna, Espana). Geogaceta, 11, 114–116.Google Scholar
  3. Ali, S. S., Yu, Y., Pfosser, M., & Wetschnig, W. (2012). Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Annals of Botany, 109(1), 95–107.PubMedCrossRefGoogle Scholar
  4. An, Z. S., Kutzbach, J. E., Prell, W. L., & Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833), 62–66.CrossRefGoogle Scholar
  5. Arbogast, B. S. (2007). A brief history of the New World flying squirrels: phylogeny, biogeography, and conservation genetics. Journal of Mammalogy, 88(4), 840–849.CrossRefGoogle Scholar
  6. Axelrod, D. I. (1985). Rise of the Grassland Biome, Central North-America. Botanical Review, 51(2), 163–201.CrossRefGoogle Scholar
  7. Baranova, G. I. (1976). On the records of Phoopetaurista moldaviensis Baranova et Konkova, 1974 (Rodentia, Pteromyidae) in the Middle Pliocene deposits of the USSR. Trudy Zoologicheskogo Instituta, Akademiya Nauk SSSR, 66, 98–100.Google Scholar
  8. Baranova, G. I. & Konkova, N. I. (1974). A new species of flying squirrel from the genus Pliopetaurista Kretzoi 1962 (Rodentia Pteromyidae) in Middle Pliocene fauna of Moldavia. In B. A. Trofimov (Eds.), Mammals of the late Caenozoic of the south-west USSR (pp. 91–98). Shtiintza, Kishinev.Google Scholar
  9. Barnosky, A. D. (1986). Arikareean, Hemingfordian, and Barstovian mammals from the Miocene Colter Formation, Jackson Hole, Teton County, Wyoming. Bulletin of Carnegie Museum of Natural History, 26, 1–69.Google Scholar
  10. Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., et al. (2003). Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research-Atmospheres, 108(D19), 8170. doi: 10.1029/2002JD002558.
  11. Black, C. C. (1966). Tertiary Sciuridae (Mammalia: Rodentia) from Bavaria. Mitteilungen der Bayerischen Staatssammlung fuer Palaeontologie und Historische Geologie, 6, 51–63.Google Scholar
  12. Black, C. C., & Kowalski, K. (1974). The Pliocene and Pleistocene Sciuridae (Mammalia, Rodentia) from Poland. Acta Zoologica Cracoviensia, 19(19), 461–485.Google Scholar
  13. Bouwens, P., & de Bruijn, H. (1986). The flying squirrels Hylopetes and Petinomys and their fossil record. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B Physical Sciences, 89(2), 113–123.Google Scholar
  14. Bruch, A. A., Uhl, D., & Mosbrugger, V. (2007). Miocene climate in Europe—Patterns and evolution—A first synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology, 253(1–2), 1–7.CrossRefGoogle Scholar
  15. Bulot, C. (1980). Decouverte de nouveaux rongeurs dans le gisement d’Estrepouy (Gers). Bulletin du Museum National d’Histoire Naturelle Section C Sciences de la Terre Paleontologie Geologie Mineralogie, 2(4), 397–406.Google Scholar
  16. Bulot, C. (1981). Le Chene de Navere: nouveau gisement de mammiferes du Miocene gersois. Bulletin de la Societe d’Histoire Naturelle de Toulouse, 117(1–4), 133–145.Google Scholar
  17. Casanovas-Vilar, I., Angelone, C., Alba, D. M., Moya-Sola, S., Koehler, M., & Galindo, J. (2010). Rodents and lagomorphs from the Middle Miocene hominoid-bearing site of Barranc de Can Vila 1 (els Hostalets de Pierola, Catalonia, Spain). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 257(3), 297–315.CrossRefGoogle Scholar
  18. Chaimanee, Y., & Jaeger, J. J. (2000). A new flying squirrel Belomys thamkaewi n. sp. (Mammalia: Rodentia) from the Pleistocene of West Thailand and its biogeography. Mammalia, 64(3), 307–318.CrossRefGoogle Scholar
  19. Cuenca, B. G. & Canudo, J. I. (1992). Los Sciuridae (Rodentia, Mammalia) del Oligoceno inferior de Montalban y Olalla (Teruel, Espana). Discusion sobre el origen de los esciuridos. Boletin de la Real Sociedad Espanola de Historia Natural Seccion Geologica, 87 (1–4), 155–169.Google Scholar
  20. Curran, L. M., Trigg, S. N., McDonald, A. K., Astiani, D., Hardiono, Y. M., Siregar, P., et al. (2004). Lowland forest loss in protected areas of Indonesian Borneo. Science, 303(5660), 1000–1003.PubMedCrossRefGoogle Scholar
  21. Daams, R. (1977). Aragonian Sciuroptera (Sciuridae, Rodentia, Mammalia) from Spain. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen - Series B: Palaeontology, Geology, Physics and Chemistry, 80(5), 356–359.Google Scholar
  22. Dahlmann, T. (2001). The micromammals from the Lower Pliocene locality of Woelfersheim/Wetterau (Mammalia: Lipotyphla, Chiroptera, Rodentia). Die Kleinsaeuger der unter-pliozaenen Fundstelle Woelfersheim in der Wetterau (Mammalia: Lipotyphla, Chiroptera, Rodentia). Courier Forschungsinstitut Senckenberg, 227, 1–129.Google Scholar
  23. Danner-Hock, G. (1970). Die Wirbeltierfauna aus dem Alt-Pliozan (O-Pannon) vom Eichkogel bei Modling (NO.). 3. Rodentia. Annalen des Naturhistorischen Museums in Wien A Mineralogie Petrologie Geologie Palaeontologie Archaeozoologie Anthropologie Praehistorie, 74, 597–605.Google Scholar
  24. Daxner-Hock, G. (1975). Taxonomische probleme um das Genus Miopetaurista Kretzoi, 1962 (Fam. Sciuridae). Palaeontologische Z, 49 (1-2), 75-77.Google Scholar
  25. Daxner-Hoeck, G. (2004). Flying squirrels (Pteromyinae, Mammalia) from the Upper Miocene of Austria. Annalen des Naturhistorischen Museums in Wien A Mineralogie Petrologie Geologie Palaeontologie Archaeozoologie Anthropologie Praehistorie, 106A, 387–423.Google Scholar
  26. Daxner-Hoeck, G. (2010). Sciuridae, Gliridae and Eomyidae (Rodentia, Mammalia) from the Middle Miocene of St. Stefan in the Gratkorn Basin (Styria, Austria). Annalen des Naturhistorischen Museums in Wien A Mineralogie Petrologie Geologie Palaeontologie Archaeozoologie Anthropologie Praehistorie, 112, 507–535.Google Scholar
  27. de Bruijn, H. (1998). Vertebrates from the Early Miocene lignite deposits of the opencast mine Oberdorf (Western Styrian Basin, Austria): 6. Rodentia 1. (Mammalia). Annalen des Naturhistorischen Museums in Wien A Mineralogie Petrologie Geologie Palaeontologie Archaeozoologie Anthropologie Praehistorie, 99A, 99–137.Google Scholar
  28. de Bruijn, H. (1999). Superfamily Sciuroidea. In G. E. Rossner & K. Heissig (Eds.), The Miocene land mammals of Europe (pp. 271–280). Munchen: Verlag Dr. Friedrich Pfeil.Google Scholar
  29. de Bruijn, H., & Unay, E. (1989). Petauristinae (Mammalia, Rodentia) from the Oligocene of Spain, Belgium, and Turkish Thrace. Natural History Museum of Los Angeles County Science Series, 33(supplement), 139–145.Google Scholar
  30. de Bruijn, H., van der Meulen, A. J. & Katsikatsos, G. (1980). The mammals from the Lower Miocene of Aliveri (Island of Evia, Greece). Part 1. The Sciuridae. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B Physical Sciences, 83(3), 241–261.Google Scholar
  31. Dehm, R. (1950). Die Nagetiere aus dem Mittel-Miocan (Burdigal um) von Wintershof - West bie Eichstatt in Bayern. Abhandlungen Neues Jahrbuch für Geologie und Paläontologie, 91(B), 321–428.Google Scholar
  32. Dehm, R. (1962). Altpleistocane Sauger von Schernfeld bei Eichst&tt in Bayern. Mitteilungen der Bayerischen Staatssammlung fuer Palaeontologie und Historische Geologie, 2, 17–61.Google Scholar
  33. Edwards, E. J., Osborne, C. P., Stromberg, C. A., Smith, S. A., Bond, W. J., Christin, P. A., et al. (2010). The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science, 328(5978), 587–591.PubMedCrossRefGoogle Scholar
  34. Emry, R. J., & Korth, W. W. (2007). A new genus of squirrel (Rodentia, Sciuridae) from the mid-Cenozoic of North America. Journal of Vertebrate Paleontology, 27(3), 693–698.CrossRefGoogle Scholar
  35. Engesser, B. (1979). Relationships of some insectivores and rodents from the Miocene of North America and Europe. Bulletin of Carnegie Museum of Natural History, 14(supplement), 1–68.Google Scholar
  36. Fedorov, V. B., Fredga, K., & Jarrell, G. H. (1999). Mitochondrial DNA variation and the evolutionary history of chromosome races of collared lemmings (Dicrostonyx) in the Eurasian Arctic. Journal of Evolutionary Biology, 12(1), 134–145.CrossRefGoogle Scholar
  37. Flower, B. P., & Kennett, J. P. (1994). The middle Miocene climatic transition—East Antarctic ice-sheet development, deep-ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108(3–4), 537–555.CrossRefGoogle Scholar
  38. Garcia-Alix, A., Minwer-Barakat, R., Martin-Suarez, E., & Freudenthal, M. (2007). New data on Mio-Pliocene Sciuridae (Rodentia, Mammalia) from southern Spain. Comptes Rendus Palevol, 6(4), 269–279.CrossRefGoogle Scholar
  39. Guo, Z. T., Peng, S. Z., Hao, Q. Z., Biscaye, P. E., An, Z. S., & Liu, T. S. (2004). Late Miocene-Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China. Global and Planetary Change, 41(3–4), 135–145.CrossRefGoogle Scholar
  40. Haffer, J. (1969). Speciation in Amazonian forest birds. Science, 165(3889), 131–137.PubMedCrossRefGoogle Scholar
  41. Haq, B. U., & Al-Qahtani, A. M. (2005). Phanerozoic cycles of sea-level change on the Arabian Platform. Geoarabia, 10(2), 127–160.Google Scholar
  42. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167.PubMedCrossRefGoogle Scholar
  43. Haynes, S., Jaarola, M., & Searle, J. B. (2003). Phylogeography of the common vole (Microtus arvalis) with particular emphasis on the colonization of the Orkney archipelago. Molecular Ecology, 12(4), 951–956.PubMedCrossRefGoogle Scholar
  44. Heissig, K. (1979). Die fruhesten Flughornchen und primitive Ailuravinae (Rodentia, Mamm.) aus dem suddeutschen Oligozan. Mitteilungen der Bayerischen Staatssammlung fuer Palaeontologie und Historische Geologie, 19, 139–169.Google Scholar
  45. Hir, J., & Venczel, M. (2005). New Middle Miocene vertebrate localities from Subpiatra (Bihor district, Romania). Acta Palaeontologica Romaniae, 5, 211–221.Google Scholar
  46. Ho, C. K., Qi, G. Q., & Chang, C. H. (1997). A preliminary study of Late Pleistocene carnivore fossils from the Penghu Channel, Taiwan. Annual of Taiwan Museum, 40, 195–224.Google Scholar
  47. Huang, W., Si, X., Hou, Y., Miller-Antonio, S., & Schepartz, L. A. (1995). Excavations at Panxian Dadong, Guizhou Province. Southern China. Current Anthropology, 36(5), 844–846.CrossRefGoogle Scholar
  48. Huchon, D., Chevret, P., Jordan, U., Kilpatrick, C. W., Ranwez, V., Jenkins, P. D., et al. (2007). Multiple molecular evidences for a living mammalian fossil. Proceedings of the National academy of Sciences of the United States of America, 104(18), 7495–7499.PubMedCrossRefGoogle Scholar
  49. Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Evolution—Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294(5550), 2310–2314.PubMedCrossRefGoogle Scholar
  50. IUCN. (2011). IUCN red list of threatened species. Version 2011.1. http://www.iucnredlist.org. Downloaded on 10 October 2011.
  51. Jaarola, M., & Searle, J. B. (2002). Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Molecular Ecology, 11(12), 2613–2621.PubMedCrossRefGoogle Scholar
  52. Jin, C., Dong, W., Liu, J. Y., Wei, G. B., Xu, Q. Q., Zheng, J. J., et al. (2000). A preliminary study of the early Pleistocene deposits and the mammalian fauna from the Renzi Cave, Fancheng, Anhui, China. Acta Anthropologica Sinica, 19(supplement), 235–245.Google Scholar
  53. Jin, C. Z., Kawamura, Y., & Taruno, H. (1999). Pliocene and Early Pleistocene insectivore and rodent faunas from Dajushan, Qipanshan and Haimao in north China and the reconstruction of the faunal succession from the Late Miocene to Middle Pleistocene. Journal of Geosciences. Osaka City University, 42, 1–19.Google Scholar
  54. Kadlecova, E. (2003). A preliminary report of Paracitellus eminens Dehm, 1950 (Aplodontidae, Ailuravinae, Rodentia, Mammalia) from the Early Miocene of NW Bohemia. Acta Universitatis Carolinae Geologica, 47(1–4), 63–66.Google Scholar
  55. Keeley, J. E., & Rundel, P. W. (2005). Fire and the Miocene expansion of C(4) grasslands. Ecology Letters, 8(7), 683–690.CrossRefGoogle Scholar
  56. Kitazoe, K., Kishino, H., Waddell, P. J., Nakajima, N., Okabayashi, T., Watabe, T., et al. (2007). Robust time estimation reconciles views of the antiquity of placental mammals. PLoS One, 2(4), 1–11.CrossRefGoogle Scholar
  57. Koenigswald, W. V. (1973). Husarenhof 4, eine alt-bis mittelpleistozane Kleinsaugerfauna aus Wurttemberg nit Petaurla. Neues Jb Geol Paleont Abh, 143(1), 23–38.Google Scholar
  58. Koprowski, J. L., & Nandini, R. (2008). Global hotspots and knowledge gaps for tree and flying squirrels. Current Science (Bangalore), 95(7), 851–856.Google Scholar
  59. Korth, W. W. (1994). The Tertiary record of rodents in North America. Topics in Geobiology, 12, 1–319.Google Scholar
  60. Korth, W. W. (2009). Mammals from the blue ash local fauna (Late Oligocene), South Dakota. Rodentia, part 3: family Sciuridae. Paludicola, 7(2), 47–60.Google Scholar
  61. Kretzoi, M. (1959). Insectivoren, Nagetiere und Lagomorphen der jungstpliozanen Fauna von Csarnota im Villanyer Gebirga (Sudungarn). Vertebrata Hungarica, 1, 237–246.Google Scholar
  62. Kretzoi, M. (1962). Fauna und faunenhorizont von Csarnota. Jahresbericht der Ungarischen Geologischen Anstalt, 1959, 297–396.Google Scholar
  63. Kretzoi, M. (1965). Die Nager und Lagomorphen von Voigtstedt in Thuringen und ihre chronologische Aussage. Paläontologische Abhandlungen. Abteilung A. Paläozoologie., 2, 585–661.Google Scholar
  64. Laub, R. S. (2009). New data on holocene fossil mammal occurrences at the hiscock site and its environs, western New York state. Bulletin of the Buffalo Society of Natural Sciences, 38, 33–42.Google Scholar
  65. Liu, W., Wu, X. Z., Pei, S. W., Wu, X. J., & Norton, C. J. (2010). Huanglong Cave: A late Pleistocene human fossil site in Hubei Province, China. Quaternary International, 211(1–2), 29–41.CrossRefGoogle Scholar
  66. Mai, D. H., & Walther, H. (1991). Die oligozänen und untermiozänen Floren NW-Sachsens und des Bitterfelder Raumes. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 38, 1–230.Google Scholar
  67. Marincovich, L., & Gladenkov, A. Y. (1999). Evidence for an early opening of the Bering Strait. Nature, 397(6715), 149–151.CrossRefGoogle Scholar
  68. Markovic, Z. (2008). Rodents of Middle Miocene localities of Lazarevac village and Bele Vode (Central Serbia). Bulletin of the Natural History Museum in Belgrade, 1, 79–98.Google Scholar
  69. Martin, R. A. (1974). Fossil mammals from the Coleman 2A fauna, Sumter County. In S. D. Webb (Eds.), Pleistocene mammals of Florida (pp. 35–99). Gainesville: University Presses of Florida.Google Scholar
  70. McKenna, M. C. & Bell, S. K. (1997). Book classification of mammals: above the species level. New York & Chichester, West Sussex: Columbia University Press.Google Scholar
  71. Mein, P. (1970a). Les sciuropteres (Mammalia, Rodentia) Neogenes d’Europe Occidentale. Geobios, Lyon, 3(3), 7–77.CrossRefGoogle Scholar
  72. Mein, P. (1970b). Les sciuropteres (Mammalia, Rodentia) Neogenes d’Europe Occidentale. Geobios, 3(3), 7–77.CrossRefGoogle Scholar
  73. Mein, P. (1992). Taxonomy. In: B. Bassano, P. Durio, U. Gallo Orsi, & E. Macchi, (Eds.), First international symposium on Alpine Marmot (Marmota marmota) and on genus Marmota. Proceedings: Saint Vincent, AostaItaly, October 2830, 1991 (pp. 6–12). Torino.: Dipartimento di Produzioni Animali, Epidemiologia ed Ecologia.Google Scholar
  74. Mein, P., & Adrover, H. R. (1977). Yacimiento de El Arquillo 3, en Teruel, Espana. (Nota preliminar). Acta Geologica Hispanica, 12(1–3), 46–48.Google Scholar
  75. Mein, P., & Ginsburg, L. (2002). Sur l’âge relatif des différents karstiques miocènes de La Grive-Saint-Alban (Isère). Cahiers scientifiques, Muséum d’Histoire naturelle, 2, 7–47.Google Scholar
  76. Menouret, B., & Mein, P. (2008). The Upper Miocene vertebrates of Soblay (Ain, France). Documents des Laboratoires de Geologie Lyon, 165, 1–97.Google Scholar
  77. Mercer, J. H. (1983). Cenozoic Glaciation in the Southern-Hemisphere. Annual Review of Earth and Planetary Sciences, 11, 99–132.CrossRefGoogle Scholar
  78. Mercer, J. M., & Roth, V. L. (2003). The effects of Cenozoic global change on squirrel phylogeny. Science, 299(5612), 1568–1572.PubMedCrossRefGoogle Scholar
  79. Meredith, R. W., Hekkala, E. R., Amato, G., & Gatesy, J. (2011). A phylogenetic hypothesis for Crocodylus (Crocodylia) based on mitochondrial DNA: Evidence for a trans-Atlantic voyage from Africa to the New World. Molecular Phylogenetics and Evolution, 60(1), 183–191.PubMedCrossRefGoogle Scholar
  80. Nadachowski, A., Miroslaw-Grabowska, J., David, A., Tomek, T., Garapich, A., Pascaru, V., et al. (2006). Faunal assemblages and biostratigraphy of several Pliocene sites from Moldova. Courier Forschungsinstitut Senckenberg, 256, 249–259.Google Scholar
  81. Nicoara, I. (2011). Upper turolian sciuroidea (rodentia, mammalia) from the republic of moldova. Acta Palaeontologica Romaniae, 7, 257–265.Google Scholar
  82. Nowak, R. M. (1999). Book Walker’s mammals of the world. Baltimore & London: Johns Hopkins University Press.Google Scholar
  83. Nylander, J. A. A., Olsson, U., Alstrom, P., & Sanmartin, I. (2008). Accounting for phylogenetic uncertainty in biogeography: A Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus). Systematic Biology, 57(2), 257–268.PubMedCrossRefGoogle Scholar
  84. Oshida, T., Abramov, A., Yanagawa, H., & Masuda, R. (2005). Phylogeography of the Russian flying squirrel (Pteromys volans): implication of refugia theory in arboreal small mammal of Eurasia. Molecular Ecology, 14(4), 1191–1196.PubMedCrossRefGoogle Scholar
  85. Oshida, T., Lin, L.-K., Yanagawa, H., Endo, H., & Masuda, R. (2000). Phylogenetic relationships among six flying squirrel genera, inferred from mitochondrial cytochrome b gene sequences. Zoological Science, 17(4), 485–489.Google Scholar
  86. Otto-Bliesner, B. L., Brady, E. C., Clauzet, G., Tomas, R., Levis, S., & Kothavala, Z. (2006). Last glacial maximum and Holocene climate in CCSM3. Journal of Climate, 19(11), 2526–2544.CrossRefGoogle Scholar
  87. Popov, V. V. (2004). Pliocene small mammals (Mammalia, Lipotyphla, Chiroptera, Lagomorpha, Rodentia) from Muselievo (North Bulgaria). Geodiversitas, 26(3), 403–491.Google Scholar
  88. Pratt, A. E., & Morgan, G. S. (1989). New sciurid (Mammalia: Rodentia) from the Early Miocene Thomas Farm Local Fauna. Florida. Journal of Vertebrate Paleontology, 9(1), 89–100.CrossRefGoogle Scholar
  89. Qiu, Z. D. (1991). The Neogene mammalian faunas of Ertemte and Harr Obo in Inner Mongolia (Nei Mongol), China—8. Sciuridae (Rodentia). Senckenbergiana Lethaea, 71(3–4), 223–255.Google Scholar
  90. Qiu, Z. D. (2002). Sciurids from the Late Miocene Lufeng hominoid locality, Yunnan. Vertebrata Palasiatica, 40(3), 177–193.Google Scholar
  91. Qiu, Z. D., & Liu, Y. P. (1986). The Aragonian vertebrate fauna of Xiacaowan, Jiangsu—5. Sciuridae (Rodentia, Mammalia). Vertebrata Palasiatica, 24(3), 195–209.Google Scholar
  92. Ray, N. & Adams, J. M. (2001). A GIS-based vegetation map of the world at the last glacial maximum (25,000–15,000 BP). Internet Archaeology (http://intarch.ac.uk/journal/issue11/rayadams_toc.html), 11.
  93. Raymo, M. E., & Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359(6391), 117–122.CrossRefGoogle Scholar
  94. Ronquist, F. (1997). Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Systematic Biology, 46(1), 195–203.CrossRefGoogle Scholar
  95. Ruez, D. R., Jr. (2001). Early Irvingtonian (latest Pliocene) rodents from Inglis 1C, Citrus County, Florida. Journal of Vertebrate Paleontology, 21(1), 153–171.CrossRefGoogle Scholar
  96. Shevyreva, N. S., & Baranova, G. I. (2003). Sciuromorpha (Rodentia) from the Miocene of Zaissan Depression, eastern Kazakhstan. Russian Journal of Theriology, 2(1), 9–13.Google Scholar
  97. Shushpanov, K. I., & Lungu, A. N. (1993). New dates about Sciuridaeu [Sciuridae] Pteromyidae (Rodentia) of Late Neogene of Moldova. Buletinul Academiei de Stiinte a Republicii Moldova Stiinte Biologice si Chimice, 3(33–37), 74.Google Scholar
  98. Sinitsa, M. V. (2011). Pliopetaurista (Mammalia, Rodentia) from the Neogene of Ukraine. Vestnik Zoologii, 45(1), 19–33.Google Scholar
  99. Skwara, T. (1986). A new ‘flying squirrel’ (Rodentia: Sciuridae) from the Early Miocene of southwestern Saskatchewan. Journal of Vertebrate Paleontology, 6(3), 290–294.CrossRefGoogle Scholar
  100. Steppan, S. J., Storz, B. L., & Hoffmann, R. S. (2004). Nuclear DNA phylogeny of the squirrels (Mammalia: Rodentia) and the evolution of arboreality from c-myc and RAG1. Molecular Phylogenetics and Evolution, 30(3), 703–719.PubMedCrossRefGoogle Scholar
  101. Storch, G., Engesser, B., & Wuttke, M. (1996). Oldest fossil record of gliding in rodents. Nature, 379(6564), 439–441.CrossRefGoogle Scholar
  102. Sun, J. M., Zhang, Z. Q., & Zhang, L. Y. (2009). New evidence on the age of the Taklimakan Desert. Geol, 37(2), 159–162.CrossRefGoogle Scholar
  103. Terzea, E. (1980). Deux micromammiferes du pliocene de Roumanie. Travaux de l’Institut de Speologie “Emile Racovitza”, 19, 191–201.Google Scholar
  104. Thorington, R. W. (1984). Flying squirrels are monophyletic. Science, 225(4666), 1048–1050.PubMedCrossRefGoogle Scholar
  105. Thorington, R. W., Darrow, K., & Anderson, C. G. (1998). Wing tip anatomy and aerodynamics in flying squirrels. Journal of Mammalogy, 79(1), 245–250.CrossRefGoogle Scholar
  106. Thorington, R. W., & Heaney, L. R. (1981). Body proportions and gliding adaptations of flying squirrels (Petauristinae). Journal of Mammalogy, 62(1), 101–114.CrossRefGoogle Scholar
  107. Thorington, R. W., & Hoffmann, R. S. (2005). Family Sciuridae. In D. E. Wilson & D. M. Reeder (Eds.), Mammal species of the world: A taxonomic and geographic reference (3rd ed., pp. 754–818). Baltimore: Johns Hopkins University Press.Google Scholar
  108. Thorington, R. W., Schennum, C. E., Pappas, L. A., & Pitassy, D. (2005). The difficulties of identifying flying squirrels (Sciuridae: Pteromyini) in the fossil record. Journal of Vertebrate Paleontology, 25(4), 950–961.CrossRefGoogle Scholar
  109. Tong, H. W. (2007). Aeretes melanopterus (Pteromyinae, Rodentia) from Tianyuan Cave near Zhoukoudian (Choukoutien) in China. Geobios (Villeurbanne), 40(2), 219–230.CrossRefGoogle Scholar
  110. Tong, H. W., Zhang, S. Q., Li, Q., & Xu, Z. J. (2008). Late Pleistocene mammalian fossils from the Xitaiping Cave, Shidu, Beijing. Vertebrata Palasiatica, 46(1), 51–70.Google Scholar
  111. Turner, A. (2001). Hominoid evolution and climatic change in Europe volume 1. The evolution of neogene terrestrial ecosystems in Europe. Journal of Human Evolution, 40(2), 159–160.CrossRefGoogle Scholar
  112. Venczel, M., Hir, J., Huza, R. R., Popa, E., & Golban, D. (2005). A new Middle Miocene vertebrate fauna from Subpiatra (Bihor County, Romania). Nymphaea, 32, 23–38.Google Scholar
  113. Werner, J. (1994). Beitrage zur Biostratigraphie der Unteren Susswasser-Molasse Suddeutschlands - Rodentia und Lagomorpha (Mammalia) aus den Fundstellen der Ulmer Gegend. Stuttgarter Beitraege zur Naturkunde Serie B (Geologie und Palaeontologie), 200, 1–263.Google Scholar
  114. Wing, S. L. (1998). Tertiary vegetation of North America as a context for mammalian evolution. In: C. M. Janis & K. M. Scott & L. L. Jacobs (Eds.), Evolution of tertiary mammals of north America. Volume 1: terrestrial carnivores, ungulates, and ungulatelike mammals (pp. 37–65). Cambridge, New York & Melbourne: Cambridge University Press.Google Scholar
  115. Young, C. C. (1934). On the Insectivora, Cheiroptera, Bodentia and Primates, other than Sinanthropus, from locality at Choukoutien. Palaeontologia Sinica, C8, 1–160.Google Scholar
  116. Young, C. C. (1947). Notes on a Pleistocene microfauna from Loping, Kiangsi. Bulletin of the Geological Society of China, 27, 163–170.Google Scholar
  117. Yu, Y., Harris, A. J., & He, X. (2010). S-DIVA (statistical dispersal-vicariance analysis): A tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution, 56(2), 848–850.PubMedCrossRefGoogle Scholar
  118. Yu, Y., Harris, A. J. & He, X. J. (2011). RASP (reconstruct ancestral state in phylogenies) 2.0 beta. Available at http://mnh.scu.edu.cn/soft/blog/RASP.
  119. Yu, F., Pang, J., Kilpatrick, C. W., McGuire, P. M., Wang, Y., Lu, S., et al. (2006). Phylogeny and biogeography of the Petaurista philippensis complex (Rodentia: Sciuridae), inter- and intraspecific relationships inferred from molecular and morphometric analysis. Molecular Phylogenetics and Evolution, 38(3), 755–766.PubMedCrossRefGoogle Scholar
  120. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693.PubMedCrossRefGoogle Scholar
  121. Zhang, Z. Q. (2006). Chinese Late Neogene land mammal community and the environmental changes of East Asia. Vertebrata Palasiatica, 44(2), 133–142.Google Scholar
  122. Zhang, Z. S., Wang, H. J., Guo, Z. T., & Jiang, D. B. (2007). Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China. Earth and Planetary Science Letters, 257(3–4), 622–634.Google Scholar
  123. Zheng, S. H. (1993). Quaternary rodents of Sichuan-Guizhou area, China. Beijing: Science Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xuefei Lu
    • 1
    • 2
  • Deyan Ge
    • 1
  • Lin Xia
    • 1
  • Zhaoqun Zhang
    • 3
  • Song Li
    • 4
  • Qisen Yang
    • 1
    Email author
  1. 1.Institute of ZoologyChinese Academy of Sciences (CAS)BeijingChina
  2. 2.Graduate University of CASBeijingChina
  3. 3.Institute of Vertebrate Paleontology and Paleoanthropology, CASBeijingChina
  4. 4.Kunming Institute of Zoology, CASKunmingChina

Personalised recommendations