Skip to main content
Log in

Interspecific Competition and Speciation in Endoparasitoids

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Ecological speciation occurs when inherent reproductive barriers to gene flow evolve between populations as a result of divergent natural selection. Frequency dependent effects associated with intraspecific resource competition are thought to be one important source of divergent selection facilitating ecological speciation. Interspecific competition may also play an important role in promoting population divergence. Although evidence for interspecific competition in nature is ubiquitous, there is currently little empirical data supporting its role in the speciation process. Here, we discuss two general models in which interspecific competition among species can promote ecological speciation among populations within a species. In both models, interspecific competition is the source of divergent selection driving adaption to different portions of the resource distribution, generating ecological reproductive isolation from other conspecific populations. We propose that the biology of endoparasitoids that attack phytophagous insects make model systems for studying the role of interspecific competition in ecological speciation. We describe details for one such system, the community of endoparasitic braconid wasps attacking Rhagoletis fruit flies, as a potential model for investigating competitive speciation. We conclude by hypothesizing that a model in which interspecific competition forces an inferior competitor to alternative fly hosts may be a common theme contributing to parasitoid diversification in the Rhagoletis-parasitoid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackermann, M., & Doebeli, M. (2004). Evolution of niche width and adaptive diversification. Evolution, 58, 2599–2612.

    PubMed  Google Scholar 

  • Armstrong, R. A., & McGhee, R. (1980). Competitive exclusion. American Naturalist, 115, 151–170.

    Article  Google Scholar 

  • Bengtsson, J. (1989). Interspecific competition increases local extinction rate in a metapopulation system. Nature, 340, 713–715.

    Article  Google Scholar 

  • Berlocher, S. H., McPheron, B. A., Feder, J. L., & Bush, G. L. (1993). Genetic differentiation at allozyme loci in the Rhagoletis pomonella (Diptera, Tephritidae) species complex. Annals of the Entomological Society of America, 86, 716–727.

    Google Scholar 

  • Bolnick, D. I. (2001). Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature, 410, 463–466.

    Article  PubMed  CAS  Google Scholar 

  • Bolnick, D. I. (2004). Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks. Evolution, 58, 608–618.

    PubMed  Google Scholar 

  • Bolnick, D. I., & Lau, O. L. (2008). Predictable patterns of disruptive selection in stickleback in postglacial lakes. American Naturalist, 172, 1–11.

    Article  PubMed  Google Scholar 

  • Bolnick, D. I., & Preisser, E. L. (2005). Resource competition modifies the strength of trait-mediated predator-prey interactions. Ecology, 86, 2771–2779.

    Article  Google Scholar 

  • Brigatti, E., Sa Martins, J. S., & Roditi, I. (2006). Evolution of biodiversity and sympatric speciation through competition in a unimodal distribution of resources. Physica A, 376, 378–386.

    Article  Google Scholar 

  • Burger, R., Schneider, K. A., & Willensdorfer, M. (2006). The conditions for speciation through intraspecific competition. Evolution, 60, 2185–2206.

    PubMed  Google Scholar 

  • Bush, G. L. (1966). The taxonomy, cytology, and evolution of the genus Rhagoletis in North America (Diptera, Tephritidae). Bulletin of the Museum of Comparative Zoology, 134, 431–562.

    Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Darwin, C. (1859). The origin of species by means of natural selection (1st ed.). London: Murray.

    Google Scholar 

  • Denno, R. F., McClure, M. S., & Ott, J. R. (1995). Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annual Review of Entomology, 40, 297–331.

    Article  CAS  Google Scholar 

  • Dieckmann, U., & Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature, 400, 354–357.

    Article  PubMed  CAS  Google Scholar 

  • Diehl, S. R., & Bush, G. L. (1989). The role of habitat preference in adaptation and speciation. In D. Otte & J. Endler (Eds.), Speciation and its consequences (pp. 345–365). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Doebeli, M. (1996). A quantitative genetic competition model for sympatric speciation. Journal of Evolutionary Biology, 9, 893–909.

    Article  Google Scholar 

  • Doebeli, M., & Dieckmann, U. (2000). Evolutionary branching and sympatric speciation caused by different types of ecological interactions. American Naturalist, 156, S77–S101.

    Article  Google Scholar 

  • Doebeli, M., & Dieckmann, U. (2003). Speciation along environmental gradients. Nature, 421, 259–264.

    Article  PubMed  CAS  Google Scholar 

  • Drossel, B., & McKane, A. (2000). Competitive speciation in quantitative genetic models. Journal of Theoretical Biology, 204, 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Egan, S. P., & Funk, D. J. (2009). Ecologically dependent postmating isolation between sympatric ‘host forms’ of Neochlamisus bebbianae leaf beetles. Proceedings of the National academy of Sciences of the United States of America, 106, 19426–19431.

    Article  PubMed  CAS  Google Scholar 

  • Egan, S. P., Janson, E. M., Brown, C. G., & Funk, D. J. (2011). Postmating isolation and genetically variable host use in ecologically divergent host forms of Neochlamisus bebbianae leaf beetles. Journal of Evolutionary Biology, 24, 2217–2229.

    Article  PubMed  CAS  Google Scholar 

  • Feder, J. L. (1995). The effects of parasitoids on sympatric host races of Rhagoletis pomonella (Diptera: Tephritidae). Ecology, 76, 801–813.

    Article  Google Scholar 

  • Feder, J. L., Chilcote, C. A., & Bush, G. L. (1988). Genetic differentiation between sympatric host races of the apple maggot fly Rhagoletis pomonella. Nature, 336, 61–64.

    Article  Google Scholar 

  • Feder, J. L., Hunt, T. A., & Bush, L. (1993). The effects of climate, host-plant phenology and host fidelity on the genetics of apple and hawthorn infesting races of Rhagoletis pomonella. Entomologia Experimentalis et Applicata, 69, 117–135.

    Article  Google Scholar 

  • Feder, J. L., Opp, S. B., Wlazlo, B., Reynolds, K., Go, W., & Spisak, S. (1994). Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proceedings of the National academy of Sciences of the United States of America, 91, 7990–7994.

    Article  PubMed  CAS  Google Scholar 

  • Forbes, A. A., Fisher, J., & Feder, J. L. (2005). Habitat avoidance: Overlooking an important aspect of host-specific mating and sympatric speciation? Evolution, 59, 1552–1559.

    PubMed  Google Scholar 

  • Forbes, A. A., Powell, T. H. Q., Stelinski, L. L., Smith, J. J., & Feder, J. L. (2009). Sequential sympatric speciation across trophic levels. Science, 323, 776–779.

    Article  PubMed  CAS  Google Scholar 

  • Forbes, A. A., Hood, G. R., & Feder, J. L. (2010). Geographic and ecological overlap of parasitoid wasps associated with the Rhagoletis pomonella (Diptera: Tephritidae) species complex. Annals of the Entomological Society of America, 103, 908–915.

    Article  Google Scholar 

  • Funk, D. J., Filchak, K. E., & Feder, J. L. (2002). Herbivorous insects: Model systems for the comparative study of speciation ecology. Genetica, 116, 251–267.

    Article  PubMed  Google Scholar 

  • Funk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National academy of Sciences of the United States of America, 103, 3209–3213.

    Article  PubMed  CAS  Google Scholar 

  • Gavrilets, S. (2004). Fitness landscapes and the origin of species. In Monographs in population biology (Vol. 41). Princeton, NJ: Princeton University Press.

  • Godfray, H. C. J. (1994). Parasitoids: Behavioral and evolutionary ecology. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Goldberg, D. E., & Barton, A. M. (1992). Patterns and consequences of interspecific competition in natural communities: A review of field experiments with plants. American Naturalist, 139, 771–801.

    Article  Google Scholar 

  • Gray, S. M., & Robinson, B. W. (2002). Experimental evidence that competition between stickleback species favours adaptive character divergence. Ecology Letters, 5, 264–272.

    Article  Google Scholar 

  • Gurevitch, J., Morrow, L. L., Wallace, A., & Walsh, J. S. (1992). A meta-analysis of competition in field experiments. American Naturalist, 14, 539–572.

    Google Scholar 

  • Harvey, J. A., Corley, L. S., & Strand, M. R. (2000). Competition induces adaptive shifts in caste rations of a polyembryonic wasp. Nature, 406, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, J. A., & Partridge, L. (1987). Murderous mandibles and black holes in hymenopteran wasps. Nature, 326, 128–129.

    Article  Google Scholar 

  • Hawkins, B. A., & Lawton, J. H. (1987). Species richness for parasitoids of British phytophagous insects. Nature, 326, 788–790.

    Article  Google Scholar 

  • Johnson, P. A., & Gullberg, U. (1998). Theory and models of sympatric speciation. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 79–89). New York, NY: Oxford University Press.

    Google Scholar 

  • Kaneko, K. (2002). Symbiotic sympatric speciation: Consequences of interaction-driven phenotype differentiation through developmental plasticity. Population Ecology, 44, 71–85.

    Article  Google Scholar 

  • Kaplan, I., & Denno, R. F. (2007). Interspecific interactions in phytophagous insects revisited: A quantitative assessment of competition theory. Ecology Letters, 11, 841–851.

    Article  Google Scholar 

  • Kondrashov, A. S., & Kondrashov, F. A. (1999). Interactions among quantitative traits in the course of sympatric speciation. Nature, 400, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • La Salle, J., & Gauld, I. D. (1991). Parasitic Hymenoptera and the biodiversity crisis. Redia, 74, 315–334.

    Google Scholar 

  • Lathrop, F. H., & Newton, R. C. (1933). The biology of Opius melleus Gahan, a parasite of the blueberry maggot. Journal of Agricultural Research, 48, 143–160.

    Google Scholar 

  • Linn, C., Feder, J. L., Nojima, S., Dambroski, H. R., Berlocher, S. H., & Roelofs, W. (2003). Fruit odor discrimination and sympatric host race formation in Rhagoletis. Proceedings of the National academy of Sciences of the United States of America, 100, 11490–11493.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, D. B., Modliszewski, J. L., Wright, K. M., Wu, C. A., & Willis, J. H. (2008). The strength and genetic basis of reproductive isolating barriers in flowering plants. Philosophical Transactions of the Royal Society B, 363, 3009–3021.

    Article  Google Scholar 

  • Maestre, F. T., Valladares, F., & Reynolds, J. F. (2005). Is the change of plant–plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. Journal of Ecology, 93, 748–757.

    Article  Google Scholar 

  • Nosil, P., Funk, D. J., & Ortíz-Barrientos, D. (2009). Divergent selection and heterogeneous genomic divergence. Molecular Ecology, 18, 375–402.

    Article  PubMed  Google Scholar 

  • Nosil, P., Vines, T. H., & Funk, D. J. (2005). Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution, 59, 705–719.

    PubMed  Google Scholar 

  • Ovruski, S., Aluja, M., Sivinski, J., & Wharton, R. (2000). Hymenopteran parasitoids on fruit-infesting Tephritidae (Diptera) in Latin American and the Southern United States: Diversity, distribution, taxanomic status and their use in fruit fly biological control. Integrated Pest Management Reviews, 5, 81–107.

    Article  Google Scholar 

  • Pennings, P. S., Kopp, M., Meszena, G., Dieckmann, U., & Hermisson, J. (2008). An analytically tractable model for competitive speciation. American Naturalist, 171, E44–E71.

    Article  PubMed  Google Scholar 

  • Pfennig, K. S., & Pfennig, D. W. (2005). Character displacement as the “best of a bad situation”: Fitness trade-offs resulting from selection to minimize resource and mate competition. Evolution, 59, 2200–2208.

    PubMed  Google Scholar 

  • Pfennig, D. W., & Rice, A. M. (2007). An experimental test of character displacement’s role in promoting postmating isolation between conspecific populations in contrasting competitive environments. Evolution, 61, 2433–2443.

    Article  PubMed  Google Scholar 

  • Pfennig, K. S., & Pfennig, D. W. (2009). Character displacement: Ecological and reproductive responses to a common evolutionary problem. The Quarterly Review of Biology, 84, 253–276.

    Article  PubMed  Google Scholar 

  • Prichard, J. R., & Schluter, D. (2001). Declining interspecific competition during character displacement: Summoning the ghost of competition past. Evolutionary Ecology Research, 3, 209–220.

    Google Scholar 

  • Rainey, P. B., & Travisano, M. (1998). Adaptive radiation in a heterogeneous environment. Nature, 394, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Rice, A. M., & Pfennig, D. W. (2010). Does character displacement initiate speciation? Evidence of reduced gene flow between populations experiencing divergent selection. Journal of Evolutionary Biology, 23, 854–865.

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig, M. L. (1978). Competitive speciation. Biological Journal of the Linnean Society, 10, 275–289.

    Article  Google Scholar 

  • Roughgarden, J. (1972). Evolution of niche width. American Naturalist, 106, 683–718.

    Article  Google Scholar 

  • Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8, 336–352.

    Article  Google Scholar 

  • Schluter, D. (2000a). The Ecology of Adaptive Radiation. Oxford: Oxford University Press.

    Google Scholar 

  • Schluter, D. (2000b). Ecological character displacement in adaptive radiation. American Naturalist, 156, S4–S16.

    Article  Google Scholar 

  • Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology & Evolution, 16, 372–380.

    Article  Google Scholar 

  • Schluter, D. (2003). Frequency dependent natural selection during character displacement in sticklebacks. Evolution, 57, 1142–1150.

    PubMed  Google Scholar 

  • Seger, J. (1985). Intraspecific resource competition as a cause of sympatric speciation. In P. J. Greenwood, P. H. Harvey, & M. Slatkin (Eds.), Evolution: Essays in honour of John Maynard Smith. Cambridge: Cambridge University Press.

    Google Scholar 

  • Slatkin, M. (1980). Ecological character displacement. Ecology, 61, 163–177.

    Article  Google Scholar 

  • Taper, M., & Case, T. J. (1992). Coevolution among competitors. Evolutionary Biology, 8, 63–109.

    Google Scholar 

  • van Nouhuys, S., & Punju, E. (2009). Coexistence of competiting parasitoids: Which is the fugitive and where does it hide? Oikos, 119, 61–70.

    Article  Google Scholar 

Download references

Acknowledgments

GRH would like to thank P. Morton for continuous support and SPE would like to thank J. L. Greene for permanent support. JLF and GRH would like to thank Mazatlan in Pendleton, OR. Funding was provided by NSF and USDA grants awarded to JLF and The Entomological Society of America, Sigma Xi and The Indiana Academy of Science grants awarded to GRH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen R. Hood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hood, G.R., Egan, S.P. & Feder, J.L. Interspecific Competition and Speciation in Endoparasitoids. Evol Biol 39, 219–230 (2012). https://doi.org/10.1007/s11692-012-9182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9182-7

Keywords

Navigation