Skip to main content
Log in

Hybrid Sterility over Tens of Meters Between Ecotypes Adapted to Serpentine and Non-Serpentine Soils

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The development of hybrid sterility is an important step in the process of speciation, however the role of adaptive evolution in triggering these postzygotic barriers is poorly understood. We show that, in the California endemic plant Collinsia sparsiflora, ecotypic adaptation to two distinct soil types is associated with the expression of intrinsic F1 hybrid sterility between ecotypes, over spatial scales of less than 1 km. First, we show that hybrids between soil-adapted ecotypes are less fertile than hybrids within soil ecotypes. Second, we show that between-ecotype postzygotic incompatibility is insensitive to soil growth environment, and can therefore operate under conditions relevant to both ecotypes in the wild. Third, we confirm there is little genetic differentiation between ecotypes using molecular markers, indicating that these postzygotic barriers are recently evolved. Finally, we explore specific soil attributes that might be the source of selective differentiation that confers hybrid sterility. Our results indicate that hybrid barriers are developing in response to strong adaptive differentiation between adjacent and very recently diverged lineages, despite likely ongoing gene exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antonovics, J. (2006). Evolution in closely adjacent plant populations X: Long-term persistence of prereproductive isolation at a mine boundary. Heredity, 97, 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Barbash, D. A., Siino, D. F., Tarone, A. M., & Roote, J. (2003). A rapidly evolving MYB-related protein causes species isolation in Drosophila. Proceedings of the National academy of Sciences of the United States of America, 100, 5302–5307.

    Article  PubMed  CAS  Google Scholar 

  • Brady, K. U., Kruckeberg, A. R. & Bradshaw H. D. (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annual review of ecology evolution and systematics, 36, 243–266.

    Google Scholar 

  • Brooks, R. R. (1987). Serpentine and its vegetation: A multidisciplinary approach. Portland, OR: Dioscorides Press.

    Google Scholar 

  • Campbell, D. R., & Waser, N. M. (2001). Genotype-by-environment interaction and the fitness of plant hybrids in the wild. Evolution, 55, 669–676.

    Article  PubMed  CAS  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Assoc., Inc.

    Google Scholar 

  • De Nettancourt, D. (2001). Incompatibility and incongruity in wild and cultivated plants. Berlin: Springer.

    Google Scholar 

  • Dettman, J. R., Sirjusingh, C., Kohn, L. M., & Anderson, J. B. (2007). Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature, 447, 585.

    Article  PubMed  CAS  Google Scholar 

  • Emms, S. K., & Arnold, M. L. (1997). The effect of habitat on parental and hybrid fitness: Transplant experiments with Louisiana irises. Evolution, 51, 1112–1119.

    Article  Google Scholar 

  • Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.

    CAS  Google Scholar 

  • Fitzpatrick, B. M., Fordyce, J. A., & Gavrilets, S. (2008). What, if anything, is sympatric speciation? Journal of Evolutionary Biology, 21, 1452–1459.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, M., & Macnair, M. (2000). Factors affecting the co-existence of the serpentine endemic Mimulus nudatus Curran and its presumed progenitor, Mimulus guttatus Fischer ex DC. Biological Journal of the Linnean Society, 69, 443–459.

    Article  Google Scholar 

  • Holt, R. D., & Gomulkiewicz, R. (1997). How does immigration influence local adaptation? A reexamination of a familiar paradigm. American Naturalist, 149, 563–572.

    Article  Google Scholar 

  • Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7, 1225–1241.

    Article  Google Scholar 

  • Kay, K. M., Ward, K. L., Watt, L. R., & Schemske, D. W. (2011). Plant speciation. In S. P. Harrison & N. Rajakaruna (Eds.), Serpentine: A model for evolution and ecology (pp. 71–95). Berkeley, CA: University of California Press.

    Google Scholar 

  • Kearns, C. A., & Inouye, D. W. (1993). Techniques for pollination biologists. Niwot, CO: University of Colorado Press.

    Google Scholar 

  • King, M. (1993). Species evolution: the role of chromosomal change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kirkpatrick, M., & Barton, N. H. (1997). Evolution of a species’ range. American Naturalist, 150, 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick, M., & Barton, N. H. (2006). Chromosome inversions, local adaptation and speciation. Genetics, 173, 419–434.

    Article  PubMed  CAS  Google Scholar 

  • Kisdi, E. (2002). Dispersal: Risk spreading versus local adaptation. American Naturalist, 159, 579–596.

    Article  PubMed  Google Scholar 

  • Kruckeberg, A. R. (1986). The stimulus of unusual geologies for plant speciation—An essay. Systematic Botany, 11, 455–463.

    Article  Google Scholar 

  • Macnair, M. R., & Christie, P. (1983). Reproductive isolation as a pleiotropic effect of copper tolerance in Mimulus guttatus. Heredity, 50, 295–302.

    Article  CAS  Google Scholar 

  • Macnair, M. R., & Gardner, M. (1998). The evolution of edaphic endemics. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 157–171). New York: Oxford University Press.

    Google Scholar 

  • Moyle, L. C. (2004). Adaptation in plant speciation: evidence for the role of selection in the evolution of isolating barriers between plant species. In Q. C. B. Cronk, J. Whitton, R. H. Ree, & I. E. P. Taylor (Eds.), Plant adaptation: Molecular genetics and ecology (pp. 82–93). Vancouver BC: National Research Council of Canada, UBC Botanical Garden.

    Google Scholar 

  • Muller, H. J. (1939). Reversibility in evolution considered from the standpoint of genetics. Biological Reviews, 14, 185–268.

    Article  Google Scholar 

  • O’Dell, R. E., & Rajakaruna, N. (2011). Intraspecific variation, adaptation, and evolution. In S. P. Harrison & N. Rajakaruna (Eds.), Serpentine: A model for evolution and ecology (pp. 97–137). Berkeley, CA: University of California Press.

    Google Scholar 

  • Olmstead, R. G., Depamphilis, C. W., Wolfe, A. D., Young, N. D., Elisons, W. J., et al. (2001). Disintegration of the Scrophulariaceae. American Journal of Botany, 88, 348–361.

    Article  PubMed  CAS  Google Scholar 

  • Presgraves, D. C., Balagopalan, L., Abmayr, S. M., & Orr, H. A. (2003). Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature, 423, 715–719.

    Article  PubMed  CAS  Google Scholar 

  • Rajakaruna, N. (2004). The edaphic factor in the origin of plant species. International Geology Review, 46, 471–478.

    Article  Google Scholar 

  • Stebbins, G. L., & Hrusa, G. F. (1995). The North Coast Range biodiversity arena in central California: A new scenario for research and teaching processes of evolution. Madrono, 42, 269–294.

    Google Scholar 

  • Thornhill, N. W. (Ed.). (1993). The natural history of inbreeding and outbreeding: Theoretical and empirical perspectives. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Ting, C. T., Tsaur, S. C., Wu, M. L., & Wu, C. I. (1998). A rapidly evolving homeobox at the site of a hybrid sterility gene. Science, 282, 1501–1504.

    Article  PubMed  CAS  Google Scholar 

  • Turner, T. L., Bourne, E. C., Von Wettberg, E. J., Hu, T. T., & Nuzhdin, S. V. (2010). Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics, 42, 260–263.

    Article  PubMed  CAS  Google Scholar 

  • Vekemans, X., & Lefebvre, C. (1997). On the evolution of heavy-metal tolerant populations in Armerin maritima: Evidence from allozyme variation and reproductive barriers. Journal of Evolutionary Biology, 10, 175–191.

    Article  Google Scholar 

  • Wright, J. W., & Stanton, M. L. (2007). Collinsia sparsiflora in serpentine and nonserpentine habitats: Using F2 hybrids to detect the potential role of selection in ecotypic differentiation. New Phytologist, 173, 354–366.

    Article  PubMed  Google Scholar 

  • Wright, J. W., & Stanton, M. L. (2011). Using experiments to understand plant adaptation in heterogeneous landscapes—Reciprocal transplant approaches and beyond. In S. P. Harrison & N. Rajakaruna (Eds.), Serpentine: A model for evolution and ecology (pp. 155–179). Berkeley, CA: University of California Press.

    Google Scholar 

  • Wright, J. W., Stanton, M. L., & Scherson, R. (2006). Local adaptation to serpentine and non-serpentine soils in Collinsia sparsiflora. Evolutionary Ecology Research, 8, 1–21.

    Google Scholar 

  • Wyatt, R. (1988). Phylogenetic aspects of the evolution of self-pollination. In L. D. Gottlieb & S. K. Jain (Eds.), Plant evolutionary biology (pp. 109–131). London: Chapman and Hall.

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank O. Ervin for greenhouse assistance, and M. Hahn and L. Rieseberg for comments on earlier manuscript drafts. S. Kalisz was instrumental in the development of the microsatellite markers. This research was supported by grants from the David and Lucille Packard Foundation, the Andrew W. Mellon Foundations, U.C. Davis Bridge Funds, the U.C. Davis Center for Population Biology, the USDA- Forest Service, Pacific Southwest Research Station- Institute of Forest Genetics, and the Indiana University Department of Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonie C. Moyle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 87 kb)

Supplementary Figure 1 (PPT 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moyle, L.C., Levine, M., Stanton, M.L. et al. Hybrid Sterility over Tens of Meters Between Ecotypes Adapted to Serpentine and Non-Serpentine Soils. Evol Biol 39, 207–218 (2012). https://doi.org/10.1007/s11692-012-9180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9180-9

Keywords

Navigation