Evolutionary Biology

, Volume 39, Issue 2, pp 231–241 | Cite as

Signal Divergence is Correlated with Genetic Distance and not Environmental Differences in Darters (Percidae: Etheostoma)

Research Article

Abstract

Speciation research focuses on the evolutionary mechanisms responsible for the origin of species, and recent treatments have distinguished ecological and mutation-order speciation as distinct evolutionary processes. Using a research framework that considers ‘speciation phenotypes’ (sensu Shaw and Mullen in Genet 139(5):649–661, 2011) and a modified hierarchy of speciation models, we address whether speciation in benthic fishes commonly called darters proceeds under divergent ecological selection or a mutation-order process. We examined neutral genetic divergence, sexual signal (male color) divergence, environmental differences, and geographic distance in 66 species pair comparisons. Modified Mantel tests detected significant relationships between genetic distance and overall male color differences, as well as geographic distance and overall male color differences; however, after accounting for the correlation of male color and geographic distance with genetic distance using a partial Mantel test, no relationship was observed between male color and geographic distance. Neither microhabitat nor climatic measures of environmental differences correlated with overall male color differences. Color difference scores for discrete color categories (i.e., red/orange/yellow, black, and blue/green) differed in their correlations with explanatory variables, implying different selection regimes may be influencing each component of darter color patterns. Our results do not support a primary role for divergent ecological selection shaping early divergence of darter sexual signals. Instead, a model of mutation-order speciation may best explain the clock-like manner of changes in male color among darter species.

Keywords

Speciation phenotype Ecological speciation Mutation-order Sexual signal Etheostoma 

Supplementary material

11692_2012_9179_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)
11692_2012_9179_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 16 kb)
11692_2012_9179_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 14 kb)
11692_2012_9179_MOESM4_ESM.docx (13 kb)
Supplementary material 4 (DOCX 13 kb)

References

  1. Adamson, S., & Wissing, T. (1977). Food habits and feeding periodicity of the rainbow, fantail, and banded darters in Four Mile Creek. The Ohio Journal of Science, 77(4), 164–169.Google Scholar
  2. Alford, J., & Beckett, D. (2007). Selective predation by four darter (Percidae) species on larval chironomids (Diptera) from a Mississippi stream. Environmental Biology of Fishes, 78(4), 353–364.CrossRefGoogle Scholar
  3. Armbruster, J. W., & Page, L. M. (1996). Convergence of a cryptic saddle pattern in benthic freshwater fishes. Environmental Biology of Fishes, 45, 249–257.CrossRefGoogle Scholar
  4. Avise, J. (1994). Molecular markers, natural history and evolution. New York, NY: Chapman and Hall.CrossRefGoogle Scholar
  5. Boughman, J. (2001). Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature, 411(6840), 944–948.PubMedCrossRefGoogle Scholar
  6. Campbell, P., Pasch, B., et al. (2010). Geographic variation in the songs of neotropical singing mice, testing the relative importance of drift and local adaptation. Evolution, 64(7), 1955–1972.PubMedGoogle Scholar
  7. Carlson, R., & Wainwright, P. (2010). The ecological morphology of darter fishes (Percidae: Etheostomatinae). Biological Journal of the Linnean Society, 100(1), 30–45.CrossRefGoogle Scholar
  8. Clotfelter, E. D., Ardia, D. R., & McGraw, K. J. (2007). Red fish, blue fish: Trade-offs between pigmentation and immunity in Betta splendens. Behavioral Ecology, 18, 1139–1145.CrossRefGoogle Scholar
  9. Cocroft, R., Rodriguez, R., et al. (2010). Host shifts and signal divergence, mating signals covary with host use in a complex of specialized plant-feeding insects. Biological Journal of the Linnean Society, 99(1), 60–72.CrossRefGoogle Scholar
  10. Coyne, J., & Orr, H. (2004). Speciation. Sunderland, MA: Sinauer Associates.Google Scholar
  11. Cummings, M. (2007). Sensory trade-offs predict signal divergence in surfperch. Evolution, 61(3), 530–545.PubMedCrossRefGoogle Scholar
  12. Dalton, B., Cronin, T., et al. (2010). The fish eye view, are cichlids conspicuous? Journal of Experimental Biology, 213(13), 2243–2255.PubMedCrossRefGoogle Scholar
  13. De Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation: Conceptual unification and terminological recommendations. In D. Howard & S. Berlocher (Eds.), Endless forms: Species and speciation (pp. 57–75). Oxford, UK: Oxford University Press.Google Scholar
  14. DeNicola, M., Hoagland, K., et al. (1992). Influences of canopy cover on spectral irradiance and periphyton assemblages in a prairie stream. Journal of the North American Benthological Society, 11(4), 391–404.CrossRefGoogle Scholar
  15. Endler, J. (1992). Signals, signal conditions, and the direction of evolution. American Naturalist, 139, S125–S153.CrossRefGoogle Scholar
  16. Etnier, D., & Bailey, R. (1989). Etheostoma (Ulocentra) flavum, a new darter from the Tennessee and Cumberland river drainages. Occasional Papers of the Museum of Zoology the University of Michigan, 717, 1–24.Google Scholar
  17. Etnier, D., & Starnes, W. (2001). The fishes of Tennessee. Knoxville, TN: The University of Tennessee Press.Google Scholar
  18. Fleishman, L., Leal, M., et al. (2009). Habitat light and dewlap color diversity in four species of Puerto Rican Anoline lizards. Journal of Comparative Physiology A, 195(11), 1043–1060.CrossRefGoogle Scholar
  19. Fuller, R. (2002). Lighting environment predicts the relative abundance of male colour morphs in bluefin killifish (Lucania goodei) populations. Proceedings of the Royal Society B: Biological Sciences, 269(1499), 1457–1465.PubMedCrossRefGoogle Scholar
  20. Greenberg, L. (1991). Habitat use and feeding behavior of thirteen species of benthic stream fishes. Environmental Biology of Fishes, 31, 389–401.CrossRefGoogle Scholar
  21. Grether, G. F., Kasahara, S., Kolluru, G. R., & Cooper, E. L. (2004). Sex–specific effects of carotenoid intake on the immunological response to allografts in guppies (Poecilia reticulata). Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, 45–49.PubMedCrossRefGoogle Scholar
  22. Gumm, J., & Mendelson, T. (2011). The evolution of multi-component visual signals in darters (genus Etheostoma). Current Zoology, 57(2), 125–139.Google Scholar
  23. Gumm, J., Feller, K., et al. (2011). Spectral characteristics of male nuptial coloration in darters (Etheostoma). Copeia, 2011(2), 319–326.CrossRefGoogle Scholar
  24. Hammer, Ø., Harper, D., et al. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.Google Scholar
  25. Harmon, L., & Glor, R. (2010). Poor statistical performance of the Mantel test in phylogenetic comparative analyses. Evolution, 64, 2173–2178.PubMedGoogle Scholar
  26. Harrison, R. G. (1998). Linking evolutionary pattern and process: The relevance of species concepts for the study of speciation. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 19–31). New York: Oxford University Press.Google Scholar
  27. Hlohowskyj, I., & White, A. (1983). Food resource partitioning and selectivity by the greenside, rainbow, and fantail darters (Pisces: Percidae). The Ohio Journal of Science, 83(4), 201–208.Google Scholar
  28. Irwin, D. (2000). Song variation in an avian ring species. Evolution, 54(3), 998–1010.PubMedGoogle Scholar
  29. Jawor, J. M., & Breitwisch, R. (2003). Melanin ornaments, honesty, and sexual selection. The Auk, 120, 249–265.CrossRefGoogle Scholar
  30. Julian, J., Doyle, M., et al. (2008). Empirical modeling of light availability in rivers. Journal of Geophysical Research, 113(G3), G03022.CrossRefGoogle Scholar
  31. Kirkpatrick, M., & Ravigne, V. (2002). Speciation by natural and sexual selection: Models and experiments. American Naturalist, 159, S22–S35.PubMedCrossRefGoogle Scholar
  32. Lin, S. M., Nieves-Puigdoller, K., Brown, A. C., McGraw, K. J., & Clotfelter, E. D. (2010). Testing the carotenoid trade-off hypothesis in the polychromatic Midas cichlid, Amphilophus citrinellus. Physiological and Biochemical Zoology, 83, 333–342.PubMedGoogle Scholar
  33. Maddison, W. P., & Maddison. D. R. (2010). Mesquite: A modular system for evolutionary analysis. http://mesquiteproject.org.
  34. Mani, G., & Clarke, B. (1990). Mutational order, a major stochastic process in evolution. Proceedings of the Royal Society B: Biological Sciences, 240(1297), 29–37.CrossRefGoogle Scholar
  35. Marie Curie Speciation Network. (2011). What do we need to know about speciation? Trends in Ecology & Evolution, (in press).Google Scholar
  36. Martin, F. (1984). Diets of four sympatric species of Etheostoma (Pisces, Percidae) from southern Indiana, interspecific and intraspecific multiple comparisons. Environmental Biology of Fishes, 11(2), 113–120.CrossRefGoogle Scholar
  37. Matthews, W., Bek, J., et al. (1982). Comparative ecology of the darters Etheostoma podostemone, E. flabellare and Percina roanoka in the upper Roanoke River drainage, Virginia. Copeia, 1982(4), 805–814.CrossRefGoogle Scholar
  38. McCormick, F., & Aspinwall, N. (1983). Habitat selection in three species of darters. Environmental Biology of Fishes, 8(3), 279–282.CrossRefGoogle Scholar
  39. McNett, G., & Cocroft, R. (2008). Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behavioral Ecology, 19(3), 650–656.CrossRefGoogle Scholar
  40. Mendelson, T., & Shaw, K. (2005). Use of AFLP markers in surveys of arthropod diversity. Molecular Evolution, Producing the Biochemical Data, Part B (Vol. 395, pp. 161–177). San Diego, Elsevier Academic Press Inc.Google Scholar
  41. Mendelson, T., & Simons, J. (2006). AFLPs resolve cytonuclear discordance and increase resolution among barcheek darters (Percidae: Etheostoma, Catonotus). Molecular Phylogenetics and Evolution, 41(2), 445–453.PubMedCrossRefGoogle Scholar
  42. Mendelson, T., & Wong, M. (2010). AFLP phylogeny of the snubnose darters and allies (Percidae: Etheostoma) provides resolution across multiple levels of divergence. Molecular Phylogenetics and Evolution, 57(3), 1253–1259.PubMedCrossRefGoogle Scholar
  43. Montgomerie, R. (2006). Analyzing colors. In G. Hill & K. McGraw (Eds.), Bird coloration, function and evolution (p. 2). Cambridge: Harvard University Press.Google Scholar
  44. Moore, W. (1995). Inferring phylogenies from mtDNA variation, mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49(4), 718–726.CrossRefGoogle Scholar
  45. Near, T., & Keck, B. (2005). Dispersal, vicariance, and timing of diversification in Nothonotus darters. Molecular Ecology, 14(11), 3485–3496.PubMedCrossRefGoogle Scholar
  46. Near, T., Bossu, C., et al. (2011). Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae). Systematic Biology, 60(5), 565–595.PubMedCrossRefGoogle Scholar
  47. Nosil, P., & Flaxman, S. (2011). Conditions for mutation-order speciation. Proceedings of the Royal Society B: Biological Sciences, 278(1704), 399–407.PubMedCrossRefGoogle Scholar
  48. Olson, V. A., & Owens, I. P. F. (1998). Costly sexual signals: Are carotenoids rare, risky or required? Trends in Ecology & Evolution, 13, 510–514.CrossRefGoogle Scholar
  49. Page, L., & Burr, B. (2011). Peterson field guide to freshwater fishes. New York, NY: Houghton Mifflin.Google Scholar
  50. Panhuis, T., Butlin, R., et al. (2001). Sexual selection and speciation. Trends in Ecology & Evolution, 16(7), 364–371.CrossRefGoogle Scholar
  51. Porter, B., Cavender, T., et al. (2002). Molecular phylogeny of the snubnose darters, subgenus Ulocentra (Genus Etheostoma: family Percidae). Molecular Phylogenetics and Evolution, 22(3), 364–374.PubMedCrossRefGoogle Scholar
  52. Price, T. (2008). Speciation in Birds. Greenwood Village, CO, Roberts & Company Publishers.Google Scholar
  53. Ritchie, M. (2007). Sexual selection and speciation. Annual Review of Ecology Evolution and Systematics, 38, 79–102.CrossRefGoogle Scholar
  54. Ruegg, K., Slabbekoorn, H., et al. (2006). Divergence in mating signals correlates with ecological variation in the migratory songbird, Swainson’s thrush (Catharus ustulatus). Molecular Ecology, 15(11), 3147–3156.PubMedCrossRefGoogle Scholar
  55. Rundell, R., & Price, T. (2009). Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends in Ecology & Evolution, 24(7), 394–399.CrossRefGoogle Scholar
  56. Rundle, H., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352.CrossRefGoogle Scholar
  57. Ryan, M. J. (1990a). Sexual selection, sensory systems and sensory exploitation. In D. J. Futuyma & J. Antonovics (Eds.), Oxford Surveys in evolutionary biology (Vol. 7, pp. 157–195). Oxford: Oxford University Press.Google Scholar
  58. Ryan, M. J. (1990b). Signals, species, and sexual selection. American Scientist, 78, 46–52.Google Scholar
  59. Ryan, M., Fox, J., et al. (1990). Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature, 343(6253), 66–67.PubMedCrossRefGoogle Scholar
  60. Schluter, D. (2000). The ecology of adaptive radiation. Oxford, UK: Oxford University Press.Google Scholar
  61. Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology & Evolution, 16(7), 372–380.CrossRefGoogle Scholar
  62. Schluter, D. (2009). Evidence for Ecological Speciation and Its Alternative. Science, 323, 737–741.PubMedCrossRefGoogle Scholar
  63. Schluter, D., & Rambaut, A. (1996). Ecological speciation in postglacial fishes. Proceedings of the Royal Society B: Biological Sciences, 351(1341), 807–814.CrossRefGoogle Scholar
  64. Seehausen, O., Terai, Y., et al. (2008). Speciation through sensory drive in cichlid fish. Nature, 455(7213), U620–U623.CrossRefGoogle Scholar
  65. Shaw, K., & Mullen, S. (2011). Genes versus phenotypes in the study of speciation. Genetica, 139(5), 649–661.PubMedCrossRefGoogle Scholar
  66. Smith, T., Mendelson, T., et al. (2011). AFLPs support deep relationships among darters (Percidae: Etheostomatinae) consistent with morphological hypotheses. Heredity, 107(6), 579–588.PubMedCrossRefGoogle Scholar
  67. Sobel, J., Chen, G., et al. (2010). The biology of speciation. Evolution, 64(2), 295–315.PubMedCrossRefGoogle Scholar
  68. Stelkens, R., & Seehausen, O. (2009). Phenotypic divergence but not genetic distance predicts assortative mating among species of a cichlid fish radiation. Journal of Evolutionary Biology, 22(8), 1679–1694.PubMedCrossRefGoogle Scholar
  69. Swofford, D. (2004). PAUP*, Phylogenetic Analysis Using Parsimony (and Other Methods).. Sunderland, MA: Sinauer Associates.Google Scholar
  70. R Core Development Team (2011) A language and environment for statistical computing. http://www.r-project.org.
  71. Tobias, J., Aben, J., et al. (2010). Song divergence by sensory drive in Amazonian birds. Evolution, 64(10), 2820–2839.PubMedGoogle Scholar
  72. Turelli, M., Barton, N., et al. (2001). Theory and speciation. Trends in Ecology & Evolution, 16(7), 330–343.CrossRefGoogle Scholar
  73. van Snik Gray, E., Boltz, J., et al. (1997). Food resource partitioning by nine sympatric darter species. Transactions of the American Fisheries Society, 126(5), 822–840.CrossRefGoogle Scholar
  74. Via, S. (2001). Sympatric speciation in animals, the ugly duckling grows up. Trends in Ecology & Evolution, 16(7), 381–390.CrossRefGoogle Scholar
  75. Vos, P., Hogers, R., et al. (1995). AFLP, a new technique for DNA fingerprinting. Nucleic Acids Research, 23(21), 4407–4414.PubMedCrossRefGoogle Scholar
  76. Welsh, S., & Perry, S. (1998). Habitat partitioning in a community of darters in the Elk River, West Virginia. Environmental Biology of Fishes, 51(4), 411–419.CrossRefGoogle Scholar
  77. Williams, T., & Mendelson, T. (2010). Behavioral isolation based on visual signals in a sympatric pair of darter species. Ethology, 116(11), 1038–1049.CrossRefGoogle Scholar
  78. Williams, T., & Mendelson, T. (2011). Female preference for male coloration may explain behavioural isolation in sympatric darters. Animal Behaviour, 82(4), 683–689.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Biological SciencesUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations