Advertisement

Evolutionary Biology

, Volume 39, Issue 4, pp 488–498 | Cite as

Evolutionary Development in Australopithecus africanus

  • Kieran P. McNulty
Synthesis Paper

Abstract

Evolutionary developmental biology is quickly transforming our understanding of how lineages evolve through the modification of ontogenetic processes. Yet, while great strides have been made in the study of neontological forms, it is much more difficult to apply the principles of evo-devo to the miserly fossil record. Because fossils are static entities, we as researchers can only infer evolution and development by drawing connections between them. The choices of how we join specimens together—juveniles to adults to study ontogeny, taxon to taxon to study evolution—can dramatically affect our results. Here, I examine paedomorphism in the fossil hominin species Australopithecus africanus. Using extant African apes as proxies for ancestral hominin morphology, I demonstrate that Sts 71 is most similar to a sub-adult African ape, suggesting that A. africanus is paedomorphic relative to the presumed ancestral form. I then plot ontogenetic size and shape in extant great apes, humans, and A. africanus in order to assess patterns of ontogenetic allometry. Results indicate that ontogenetic allometry in A. africanus, subsequent to M1 occlusion is similar to that in modern humans and bonobos; gorillas, chimpanzees, and orangutans share a different pattern of size-shape relationship. Combined with results from the analysis of paedomorphism plus knowledge about the developmental chronologies of this group, these findings suggest that paedomorphism in A. africanus arises relatively early in ontogeny.

Keywords

Taung Australopithecus africanus Ontogenetic allometry Paedomorphism Heterochrony 

Notes

Acknowledgments

I am very grateful to Philipp Mitteroecker and Philipp Gunz for inviting me to participate in the Human Evo-Devo workshop in Altenberg, Austria. As always, their comments and suggestions have greatly improved my understanding of these complicated topics. I also thank Gerd Müller and the staff of the Konrad Lorenz Institute for hosting such a spectacular workshop, and the participants for providing me with an excellent educational experience. This is NYCEP Morphometrics Group contribution #64.

References

  1. Ackermann, R. R., & Krovitz, G. E. (2002). Common patterns of facial ontogeny in the hominid lineage. Anatomical Record Part B: The New Anatomist, 269, 142–147.CrossRefGoogle Scholar
  2. Alberch, P., Gould, S. J., Oster, G. F., & Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology, 5, 296–317.Google Scholar
  3. Alemseged, Z., Spoor, F., Kimbel, W. H., Bobe, R., Geraads, D., Reed, D., et al. (2006). A juvenile early hominin skeleton from Dikika, Ethiopia. Nature, 443, 296–301.PubMedCrossRefGoogle Scholar
  4. Antón, S. C. (1997). Developmental age and taxonomic affinity of the Mojokerto child, Java, Indonesia. American Journal of Physical Anthropology, 102, 497–514.PubMedCrossRefGoogle Scholar
  5. Antón, S. C., & Leigh, S. R. (2003). Growth and life history in Homo erectus. In J. L. Thompson, G. L. Krovitz, & A. J. Nelson (Eds.), Patterns of growth and development in the Genus Homo (pp. 219–245). Cambridge: Cambridge University Press.Google Scholar
  6. Armstrong, E., Zilles, K., Kurtis, M., & Schleicher, A. (1991). Cortical folding, the lunate sulcus and the evolution of the human brain. Journal of Human Evolution, 209, 341–348.CrossRefGoogle Scholar
  7. Bastir, M., & Rosas, A. (2004). Comparative ontogeny in humans and chimpanzees: Similarities, differences and paradoxes in postnatal growth and development of the skull. Annals of Anatomy, 186, 503–509.PubMedCrossRefGoogle Scholar
  8. Berger, L. R., de Ruiter, D. J., Churchill, S. E., Schmid, P., Carlson, K. J., Dirks, P. H. G. M., et al. (2010). Australopithecus sediba: A new species of Homo-like australopith from South Africa. Science, 328, 195–204.PubMedCrossRefGoogle Scholar
  9. Beynon, A. D., & Dean, M. C. (1988). Distinct dental development patterns in early fossil hominids. Nature, 335, 509–514.PubMedCrossRefGoogle Scholar
  10. Bookstein, F. L. (1996). Combining the tools of geometric morphometrics. In L. F. Marcus, M. Corti, A. Loy, G. P. J. Naylor, & D. E. Slice (Eds.), Advances in morphometrics (pp. 131–151). New York: Plenum Press.Google Scholar
  11. Bromage, T. G. (1985). Taung facial remodeling: A growth and development study. In P. V. Tobias (Ed.), Hominid evolution: Past, present and future (pp. 239–245). New York: Alan R. Liss, Inc.Google Scholar
  12. Bromage, T. G. (1989). Ontogeny of the early hominid face. Journal of Human Evolution, 18, 751–773.CrossRefGoogle Scholar
  13. Bromage, T. G., & Dean, M. C. (1985). Re-evaluation of the age at death of immature fossil hominids. Nature, 317, 525–527.PubMedCrossRefGoogle Scholar
  14. Cobb, S. N., & O’Higgins, P. (2004). Hominins do not share a common postnatal facial ontogenetic shape trajectory. Journal of Experimental Zoology Part B—Molecular and Developmental Evolution, 302B, 302–321.CrossRefGoogle Scholar
  15. Conroy, G. C., & Vannier, M. W. (1987). Dental development of the Taung skull from computerized tomography. Nature, 329, 625–627.PubMedCrossRefGoogle Scholar
  16. Coqueugniot, H., Hublin, J.-J., Veillon, F., Houët, F., & Jacob, T. (2004). Early brain growth in Homo erectus and implications for cognitive ability. Nature, 431, 299–302.PubMedCrossRefGoogle Scholar
  17. Dart, R. A. (1925). Australopithecus africanus: The man-ape of South Africa. Nature, 115, 195–199.CrossRefGoogle Scholar
  18. Dean, M. C., Leakey, M. G., Reid, D. J., Schrenk, F., Schwartz, G. T., Stringer, C., et al. (2001). Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature, 414, 628–631.PubMedCrossRefGoogle Scholar
  19. Dean, M. C., & Lucas, V. S. (2009). Dental and skeletal growth in early fossil hominins. Annals of Human Biology, 36, 545–561.PubMedCrossRefGoogle Scholar
  20. Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. New York: Wiley.Google Scholar
  21. Falk, D. (1980). A reanalysis of the South African australopithecine natural endocasts. American Journal of Physical Anthropology, 53, 525–539.PubMedCrossRefGoogle Scholar
  22. Falk, D., Hildebolt, C., & Vannier, M. W. (1989). Reassessment of the Taung early hominid from a neurological perspective. Journal of Human Evolution, 18, 485–492.CrossRefGoogle Scholar
  23. Godfrey, L. R., & Sutherland, M. R. (1995). What’s growth got to do with it? Process and product in the evolution of ontogeny. Journal of Human Evolution, 29, 405–431.CrossRefGoogle Scholar
  24. Goodall, C. R. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society: Series B, 53, 285–339.Google Scholar
  25. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge: Harvard University Press.Google Scholar
  26. Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40, 33–50.CrossRefGoogle Scholar
  27. Gunz, P., Mitteroecker, P., Neubauer, S., Bookstein, F. L., & Weber, G. W. (2005). Are Paranthropus crania only scaled variants of gracile australopithecines? American Journal of Physical Anthropology, 40(Suppl), 113–114.Google Scholar
  28. Halloway, R. L. (1992). The failure of the gyrification index (GI) to account for volumetric reorganization in the evolution of the human brain. Journal of Human Evolution, 22, 163–170.CrossRefGoogle Scholar
  29. Lacruz, R. S., Ramirez-Rozzi, F., & Bromage, T. G. (2005). Dental enamel hypoplasia, age at death, and weaning in the Taung child. South African Journal of Science, 101, 567–569.Google Scholar
  30. Leigh, S. R., Shah, N., & Buchanan, L. S. (2003). Ontogeny and phylogeny in papionin primates. Journal of Human Evolution, 45, 285–316.PubMedCrossRefGoogle Scholar
  31. Lieberman, D. E., McBratney, B. M., & Krovitz, G. (2002). The evolution and development of cranial form in Homo sapiens. Proceedings of the National Academy of Sciences, USA, 99, 1134–1139.CrossRefGoogle Scholar
  32. Lockwood, C. A. (1999). Sexual dimorphism in the face of Australopithecus africanus. American Journal of Physical Anthropology, 108, 97–127.PubMedCrossRefGoogle Scholar
  33. McNulty, K. P. (2010). Apes and tricksters: The evolution and diversification of humans’ closest relatives. Evolution: Education and Outreach, 3, 322–332.Google Scholar
  34. McNulty, K. P., Frost, S. R., & Strait, D. S. (2006). Examining affinities of the Taung child by developmental simulation. Journal of Human Evolution, 51, 274–296.PubMedCrossRefGoogle Scholar
  35. Miller, J. M. A., Albrecht, G. H., & Gelvin, B. R. (2004). Craniometric variation in early Homo compared to modern gorillas: A population-thinking approach. In F. Anapol, R. Z. German, & N. Jablonski (Eds.), Shaping primate evolution: Form, function, and behavior (pp. 66–98). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  36. Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., & Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution, 46, 679–698.PubMedCrossRefGoogle Scholar
  37. Mitteroecker, P., Gunz, P., & Bookstein, F. L. (2005). Heterochrony and geometric morphometrics: A comparison of cranial growth in Pan paniscus versus Pan troglodytes. Evolution & Development, 7(3), 244–258.CrossRefGoogle Scholar
  38. Ponce de León, M. S., & Zollikofer, C. P. E. (2001). Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature, 412, 534–538.PubMedCrossRefGoogle Scholar
  39. Raff, R. A. (2007). Written in stone: fossils, genes and evo–devo. Nature Reviews Genetics, 8, 911–919.PubMedCrossRefGoogle Scholar
  40. Rak, Y. (1983). The australopithecine face. New York: Academic Press.Google Scholar
  41. Rohlf, F. J., & Slice, D. (1990). Methods for comparison of sets of landmarks. Systematic Zoology, 39, 40–59.CrossRefGoogle Scholar
  42. Senut, B., Pickford, M., Gommery, D., Mein, P., Cheboi, K., & Coppens, Y. (2001). First hominid from the Miocene (Lukeino Formation, Kenya). Comptes Rendus de l’Academie des Sciences, Series IIA—Earth and Planetary Science, 332, 137–144.Google Scholar
  43. Shea, B. T. (1989). Heterochrony in human evolution: The case for neoteny reconsidered. Yearbook of Physical Anthropology, 32, 690–702.CrossRefGoogle Scholar
  44. Shea, B. T. (2002). Are some basic heterochronic transformations more likely than others? In S. T. Parker, J. Langer, & M. L. McKinney (Eds.), Human evolution through developmental change (pp. 181–214). Santa Fe: School of American Research Press.Google Scholar
  45. Simpson, S. W., Lovejoy, C. O., & Meindl, R. S. (1991). Relative dental development in hominoids and its failure to predict somatic growth velocity. American Journal of Physical Anthropology, 86, 113–120.CrossRefGoogle Scholar
  46. Smith, B. H. (1986). Dental development in Australopithecus and early Homo. Nature, 343, 327–330.CrossRefGoogle Scholar
  47. Smith, T. M., Tafforeau, P., Reid, D. J., Grün, R., Eggins, S., Boutakiout, M., et al. (2007a). Earliest evidence of modern human life history in North African early Homo sapiens. Proceedings of the National Academy of Sciences, USA, 104, 6128–6133.CrossRefGoogle Scholar
  48. Smith, T. M., Toussaint, M., Reid, D. J., Olejniczak, A. J., & Hublin, J.-J. (2007b). Rapid dental development in a Middle Paleolithic Belgian Neanderthal. Proceedings of the National Academy of Sciences, USA, 104, 20220–20225.CrossRefGoogle Scholar
  49. Strait, D. S., Grine, F. E., & Moniz, M. A. (1997). A reappraisal of early hominid phylogeny. Journal of Human Evolution, 32, 17–82.PubMedCrossRefGoogle Scholar
  50. Strand Viðarsdóttir, U., O’Higgins, P., & Stringer, C. (2002). The development of regionally distinct facial morphologies: A geometric morphometric study of population-specific differences in the growth of the modern human facial skeleton. Journal of Anatomy, 201, 211–229.CrossRefGoogle Scholar
  51. White, T. D., Asfaw, B., Beyene, Y., Haile-Selassie, Y., Lovejoy, C. O., Suwa, G., et al. (2009). Ardipithecus ramidus and the paleobiology of early hominids. Science, 326, 75–86.PubMedGoogle Scholar
  52. Williams, F. L., Godfrey, L. R., & Sutherland, M. R. (2002). Heterochrony and the evolution of Neandertal and modern human craniofacial form. In N. Minugh-Purvis & K. J. McNamara (Eds.), Human evolution through developmental change (pp. 405–441). Baltimore: Johns Hopkins University Press.Google Scholar
  53. Williams, F. L., Godfrey, L. R., & Sutherland, M. R. (2003). Diagnosing heterochronic perturbations in the craniofacial evolution of Homo (Neandertals and modern humans) and Pan (P. troglodytes and P. paniscus). In J. L. Thompson, G. E. Krovitz, & A. J. Nelson (Eds.). Patterns of growth and development in the genus Homo (pp. 295–319). Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Evolutionary Anthropology LaboratoryUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of AnthropologyDurham UniversityDurhamUK

Personalised recommendations