Evolutionary Biology

, Volume 40, Issue 1, pp 32–44 | Cite as

Tracing the Origin and Diversification of Dipodoidea (Order: Rodentia): Evidence from Fossil Record and Molecular Phylogeny

  • Qian Zhang
  • Lin Xia
  • Yuri Kimura
  • Georgy Shenbrot
  • Zhaoqun Zhang
  • Deyan Ge
  • Qisen YangEmail author
Research Article


Dipodoidea are a diverse rodent group whose earliest known record is from the Middle Eocene. The evolution and diversification of this superfamily have been documented by fossils and comparative morphology, but have not yet been studied from the perspective of molecular phylogeny. This study is the first attempt to reconstruct an extensive phylogeny of Dipodidae and estimate divergence times based on a nuclear gene coding for interphotoreceptor retinoid-binding protein. We found that there is a wide measure of agreement with the fossil record. Each of the three ecological groups of the extant Dipodoidea (sicistines, zapodines, and jerboas) has its distinctive distribution; the distribution patterns have been shaped by the dispersal events. The key events of paleogeographic distribution coincided with major paleoenvironmental events in the Cenozoic. The first important diversification phase occurred during the period from the Oligocene to Early Miocene, when global climate underwent major changes beginning with the Eocene/Oligocene boundary. The second adaptive radiation occurred within jerboas and was associated with the expansion of open habitat starting with the late Middle Miocene. The diversification of jerboas can be correlated with habitat changes in response to global and regional climatic events.


Climatic change Dipodidae Distribution pattern Diversification Phylogeny 



We sincerely appreciate the generous donation of muscle tissues from Dr. Liang Lu of the Chinese Center for Disease Control and Prevention. We have received valuable suggestions and references from Dr. Banyue Wang, Dr. Shaohua Zheng, Dr Olivier Maridet, and Ping Li of Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences. We would also like to express our thanks to Jun Ma and Dr. Qinglong Liang for their help in sample collection. We are grateful to Professor Colin Peter Groves of Australian National University for improvement of language. We also thank Dr. Benedikt Hallgrimsson and the anonymous reviewers for their constructive suggestions. Our research was sponsored by grants from the Natural Science Foundation of China (No: 31172065 and 31101629) and a grant (O529YX5105) from the Key Laboratory of Zoological Systematics and Evolution of the Chinese Academy of Sciences.

Supplementary material

11692_2012_9167_MOESM1_ESM.doc (699 kb)
A list of fossil record of Dipodoidea (DOC 699 kb)
11692_2012_9167_MOESM2_ESM.eps (3.2 mb)
Phylogenetic tree of Dipodidae based on Bayesian inference. Posterior probabilities are shown beside the nodes (EPS 3292 kb)


  1. An, Z. S., Kutzbach, J. E., Prell, W. L., & Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times. Nature, 411(6833), 62–66.CrossRefGoogle Scholar
  2. Bendukidze, O. G., de Bruijn, H., & Van den Hoek Ostende, L. W. (2009). A revision of Late Oligocene associations of small mammals from the Aral Formation (Kazakhstan) in the National Museum of Georgia, Tbilissi. Palaeodiversity, 2, 343–377.Google Scholar
  3. Cai, B. Q., Zheng, S. H., & Li, Q. (2007). Plio-pleistocene small mammals from the Niutoushan section of the Yuxian Basin, China. Vertebrata Palasiatica, 45(3), 232–245.Google Scholar
  4. Cooper, A., & Fortey, R. (1998). Evolutionary explosions and the phylogenetic fuse. Trends in Ecology & Evolution, 13(4), 151–156.CrossRefGoogle Scholar
  5. Cooper, A., & Penny, D. (1997). Mass survival of birds across the Cretaceous-Tertiary boundary: Molecular evidence. Science, 275(5303), 1109–1113.PubMedCrossRefGoogle Scholar
  6. Daxner-Höck, G. (2001). New zapodids (Rodentia) from Oligocene-Miocene deposits in Mongolia. Part 1. Senckenbergiana Lethaea, 81(2), 359–389.CrossRefGoogle Scholar
  7. Daxner-Höck, G., & Wu, W. Y. (2003). Plesiosminthus (Zapodidae, Mammalia) from China and Mongolia: Migrations to Europe. Deinsea, 10, 127–151.Google Scholar
  8. de Bruijn, H., Ünay, E., Saraç, G., & Yïlmaz, A. (2003). A rodent assemblage from the Eo/Oligocene boundary interval near Sungulu, Lesser Caucasus, Turkey. Coloquios de Paleontologia Volumen Extraordinario, 1, 47–76.Google Scholar
  9. Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.PubMedCrossRefGoogle Scholar
  10. Erbajeva, M. A. (1976). Fossiliferous bunodont rodents of the Trans-baikal area. Geologiya i Geofizika, 17, 144–149.Google Scholar
  11. Fahlbusch, V. (1992). The Neogene mammalian faunas of Ertemte and Harr Obo in Inner Mongolia (Nei Mongol), China.—10. Eozapus Rodentia. Senckenbergiana Lethaea, 72, 199–217.Google Scholar
  12. Flynn, L. J. (2008). Dipodidae. In C. M. Janis, G. F. Gunnell, & M. D. Uhen (Eds.), Evolution of tertiary mammals of North America. Volume 2: Small mammals, xenarthrans, and marine mammals (pp. 406–414). Cambridge, New York etc.: Cambridge University Press.Google Scholar
  13. Fortelius, M. (2007). Neogene of Old World database of fossil mammals (NOW). University of Helsinki. Available from
  14. Fortelius, M., Eronen, J., Liu, L., Pushkina, D., Tesakov, A., Vislobokova, I., et al. (2006). Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology, 238(1–4), 219–227.CrossRefGoogle Scholar
  15. Gladenkov, A. Y., Oleinik, A. E., Marincovich, L., & Barinov, K. B. (2002). A refined age for the earliest opening of Bering Strait. Palaeogeography, Palaeoclimatology, Palaeoecology, 183(3–4), 321–328.CrossRefGoogle Scholar
  16. Green, M. (1977). Neogene-Zapodidae (Mammalia-Rodentia) from South-Dakota. Journal of Paleontology, 51(5), 996–1015.Google Scholar
  17. Hasegawa, M., Thorne, J. L., & Kishino, H. (2003). Time scale of eutherian evolution estimated without assuming a constant rate of molecular evolution. Genes & Genetic Systems, 78(4), 267–283.CrossRefGoogle Scholar
  18. Hedges, S. B., Parker, P. H., Sibley, C. G., & Kumar, S. (1996). Continental breakup and the ordinal diversification of birds and mammals. Nature, 381(6579), 226–229.PubMedCrossRefGoogle Scholar
  19. Holden, M. E., & Musser, G. G. (2005). Family Dipodidae. In D. E. Wilson & D. M. Reeder (Eds.), Mammal species of the world: A taxonomic and geographic reference, Vol. 2 (3rd ed., pp. 871–893). Baltimore: Johns Hopkins University Press.Google Scholar
  20. Huang, X. S. (1992). Zapodidae (Rodentia, Mammalia) from the Middle Oligocene of Ulantatal, Nei Mongol. Vertebrata Palasiatica, 30(4), 249–286.Google Scholar
  21. Huchon, D., Chevret, P., Jordan, U., Kilpatrick, C. W., Ranwez, V., Jenkins, P. D., et al. (2007). Multiple molecular evidences for a living mammalian fossil. Proceedings of National Academy of Sciences of the United States of America, 104(18), 7495–7499.CrossRefGoogle Scholar
  22. Jaeger, J. J., Tong, H., & Denys, C. (1986). The age of the Mus-Rattus divergence—paleontological data compared with the molecular clock. Comptes Rendus De L Academie Des Sciences Serie Ii, 302(14), 917–922.Google Scholar
  23. Janis, C. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic Events. Annual Review of Ecology and Systematics, 24, 467–500.CrossRefGoogle Scholar
  24. Jansa, S. A., & Weksler, M. (2004). Phylogeny of muroid rodents: Relationships within and among major lineages as determined by IRBP gene sequences. Molecular Phylogenetics and Evolution, 31(1), 256–276.PubMedCrossRefGoogle Scholar
  25. Kalthoff, D. C., Mors, T., & Tesakov, A. (2007). Late Pleistocene small mammals from the Wannenkoepfe volcanoes (Neuwied Basin, western Germany) with remarks on the stratigraphic range of Arvicola terrestris. Geobios (Villeurbanne), 40(5), 609–623.CrossRefGoogle Scholar
  26. Kimura, Y. (2010). New material of dipodid rodents (Dipodidae, Rodentia) from the early Miocene of Gashunyinadege, Nei Mongol, China. Journal of Vertebrate Paleontology, 30(6), 1860–1873.CrossRefGoogle Scholar
  27. Kimura, Y. (2011). The earliest record of birch mice from the Early Miocene Nei Mongol, China. Naturwissenschaften, 98, 87–95.PubMedCrossRefGoogle Scholar
  28. Kitazoe, Y., Kishino, H., Waddell, P. J., Nakajima, N., Okabayashi, T., Watabe, T., et al. (2007). Robust time estimation reconciles views of the antiquity of placental mammals. PLoS One, 2(4), e384.PubMedCrossRefGoogle Scholar
  29. Klingener, D. (1966). Dipodoid rodents from the Valentine Formation of Nebraska. Occasional Papers of the Museum of Zoology. University of Michigan, 644, 1–9.Google Scholar
  30. Korth, W. W. (1993). Miosicista angulus, a new sicistine rodent (Zapodidae, Rodentia) from the Barstovian (Miocene) of Nebraska. Transactions of the Nebraska Academy of Sciences, 20, 97–100.Google Scholar
  31. Korth, W. W. (1994). The Tertiary record of rodents in North America. Topics in Geobiology, 12, 1–319.Google Scholar
  32. Kowalski, K. (1979). Fossil Zapodidae (Rodentia, Mammalia) from the Pliocene and Quaternary of Poland. Acta Zoologica Cracoviensia, 23(9), 199–212.Google Scholar
  33. Li, Q., & Meng, J. (2010). Erlianomys combinatus, a primitive myodont rodent from the Eocene Arshanto Formation, Nuhetingboerhe, Nei Mongol, China. Vertebrata Palasiatica, 48(2), 133–144.Google Scholar
  34. Li, C. K., & Qiu, Z. D. (1980). Early Miocene mammalian fossils of Xining Basin, Qinghai. Vertebrata Palasiatica, 18(3), 198–214.Google Scholar
  35. Li, Q., & Qiu, Z. D. (2005). Restudies in Sminthoides Schlosser, a fossil genus of three-toed jerboa from China. Vertebrata Palasiatica, 43(1), 24–35.Google Scholar
  36. Li, Q., Wang, X. M., & Qiu, Z. D. (2003). Pliocene mammalian fauna of Gaotege in Nei Mongol (Inner Mongolia), China. Vertebrata Palasiatica, 41(2), 104–114.Google Scholar
  37. Li, Q., & Zheng, S. H. (2005). Note on four species of dipodids (Dipodidae, Rodentia) from the Late Miocene Bahe Formation, Lantian, Shaanxi. Vertebrata Palasiatica, 43(4), 283–296.Google Scholar
  38. Liu, L. P., Zhang, Z. Q., Cui, N., & Fortelius, M. (2008). The Dipodidae (jerboas) from Loc. 30 of Baode and their environmental significance. Vertebrata Palasiatica, 46(2), 124–132.Google Scholar
  39. Lopatin, A. V., & Zazhigin, V. S. (2000). The history of the Dipodoidea (Rodentia, Mammalia) in the Miocene of Asia: 2. Zapodidae. Paleontologicheskii Zhurnal, 4, 86–91.Google Scholar
  40. López-Antoñanzas, R. (2011). First diatomyid rodent from the Early Miocene of Arabia. Naturwissenschaften, 98(2), 117–123.PubMedCrossRefGoogle Scholar
  41. López-Antoñanzas, R., & Sen, S. (2006). New Saudi Arabian Miocene jumping mouse (Zapodidae): systematics and phylogeny. Journal of Vertebrate Paleontology, 26(1), 170–181.CrossRefGoogle Scholar
  42. Luo, Z. X., Yuan, C. X., Meng, Q. J., & Ji, Q. (2011). A Jurassic eutherian mammal and the divergence of marsupials and placentals. Nature, 476, 442–445.PubMedCrossRefGoogle Scholar
  43. Martin, J. E. (1975). Small mammals from the Miocene Batesland Formation of South Dakota. Contributions to Geology, University of Wyoming Department of Geology, 14(2), 69–98.Google Scholar
  44. Martin, R. A. (1989). Early Pleistocene zapodid rodents from the Java local fauna of north-central South Dakota. Journal of Vertebrate Paleontology, 9(1), 101–109.CrossRefGoogle Scholar
  45. Martin, R. A. (1994). A preliminary review of dental evolution and paleogeography in the zapodid rodents, with emphasis on Pliocene and Pleistocene taxa. National Science Museum Monographs, 8, 99–113.Google Scholar
  46. McKenna, M. C., & Bell, S. K. (1997). Classification of mammals: Above the species level. New York, & Chichester, West Sussex: Columbia University Press.Google Scholar
  47. Meng, J., & McKenna, M. C. (1998). Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature, 394(6691), 364–367.CrossRefGoogle Scholar
  48. Mercer, J. M., & Roth, V. L. (2003). The effects of Cenozoic global change on squirrel phylogeny. Science, 299(5612), 1568–1572.PubMedCrossRefGoogle Scholar
  49. Meredith, R. W., Janecka, J. E., Gatesy, G., Ryder, O. A., Fisher, C. A., Teeling, E. C., et al. (2011). Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification. Science, 334(6055), 521–524.PubMedCrossRefGoogle Scholar
  50. Montgelard, C., Forty, E., Arnal, V., & Matthee, C. A. (2008). Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments. BMC Evolutionary Biology, 8, 321.PubMedCrossRefGoogle Scholar
  51. Oppliger, J., & Becker, D. (2010). Morphometrical analyses of northern birch mice (Sicista betulina Pallas, 1779; Mammalia; Rodentia) discovered in a rich locality from the Late Pleistocene of northwestern Switzerland. Comptes Rendus Palevol, 9(3), 113–120.CrossRefGoogle Scholar
  52. Phillips, M. J., Bennett, T. H., & Lee, M. S. Y. (2009). Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. Proceedings of National Academy of Sciences of United States of America, 106, 17089–17094.CrossRefGoogle Scholar
  53. Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25(7), 1253–1256.PubMedCrossRefGoogle Scholar
  54. Qiu, Z. D. (1996). Middle Miocene micromammalian fauna from Tunggur, Nei Mongol. Beijing: Academia Sinica.Google Scholar
  55. Qiu, Z. D. (2000). Insectivore, dipodoidean and lagomorph from the Middle Miocene Quantougou fauna of Lanzhou, Gansu. Vertebrata Palasiatica, 38(4), 287–302.Google Scholar
  56. Qiu, Z. D. (2003). The Neogene mammalian faunas of Ertemte and Harr Obo in Inner Mongolia (Nei Mongol), China.—12. Jerboas—Rodentia: Dipodidae. Senckenbergiana Lethaea, 83(1–2), 135–147.CrossRefGoogle Scholar
  57. Qiu, Z. D., & Li, Q. (2008). Late Miocene micromammals from the Qaidam Basin in the Qinghai-Xizang Plateau. Vertebrata Palasiatica, 46(4), 284–306.Google Scholar
  58. Qiu, Z. D., & Storch, G. (2000). The early Pliocene micromammalian fauna of Bilike, Inner Mongolia, China (Mammalia: Lipotyphla, Chiroptera, Rodentia, Lagomorpha). Senckenbergiana Lethaea, 80(1), 173–229.CrossRefGoogle Scholar
  59. Qiu, Z. D., & Wang, X. M. (1999). Small mammal faunas and their ages in Miocene of central Nei Mongol (Inner Mongolia). Vertebrata Palasiatica, 37(2), 120–139.Google Scholar
  60. Qiu, Z. D., Wang, X. M., & Li, Q. (2006). Faunal succession and biochronology of the Miocene through Pliocene in Nei Mongol (Inner Mongolia). Vertebrata Palasiatica, 44(2), 164–181.Google Scholar
  61. Qiu, Z. D., Zheng, S. H., & Zhang, Z. Q. (2008). Sciurids and zapodids from the Late Miocene Bahe Formation, Lantian, Shaanxi. Vertebrata Palasiatica, 46(2), 111–123.Google Scholar
  62. Rambaut, A. (2009). FigTree v1.2.3, Available from
  63. Rambaut, A., & Drummond, A. J. (2007). Tracer v1.4, Available from
  64. Rögl, F. (1999). Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica, 50(4), 339–349.Google Scholar
  65. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574.PubMedCrossRefGoogle Scholar
  66. Sanmartin, I., Enghoff, H., & Ronquist, F. (2001). Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society, 73(4), 345–390.Google Scholar
  67. Savinov, P. R. (1970). Byulleten’ Moskoskovo Obshchestva Ispytatelei Prirody, Otdel Biologicheskii. (Jerboas (Dipodidae, Rodentia) from the Neogene of Kazakhstan), pp. 91–134.Google Scholar
  68. Shenbrot, G. I. (1986). Jerboas (Rodentia, Dipodidae) in the Late Pliocene of Badchyz. Trudy Zoologicheskogo Instituta, 156, 41–58.Google Scholar
  69. Shenbrot, G. Y., Krasnov, B. R., & Rogovin, K. A. (1999). Spatial ecology of desert rodent communities. Berlin, Heidelberg, etc.: Springer.CrossRefGoogle Scholar
  70. Shenbrot, G. I., Sokolov, V. E., Heptner, V. G., & Kovalskaya, Y. M. (2008). Jerboas: Mammals of Russia and adjacent regions. Enfield, Jersey & Plymouth: Science Publishers.Google Scholar
  71. Smith, A. B., & Peterson, K. J. (2002). Dating the time of origin of major clades: Molecular clocks and the fossil record. Annual Review of Earth and Planetary Sciences, 30, 65–88.CrossRefGoogle Scholar
  72. Springer, M. S., Amrine, H. M., Burk, A., & Stanhope, M. J. (1999). Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Systematic Biology, 48(1), 65–75.PubMedCrossRefGoogle Scholar
  73. Springer, M. S., Burk, A., Kavanagh, J. R., Waddell, V. G., & Stanhope, M. J. (1997). The interphotoreceptor retinoid binding protein gene in therian mammals: Implications for higher level relationships and evidence for loss of function in the marsupial mole. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13754–13759.PubMedCrossRefGoogle Scholar
  74. Stanhope, M. J., Czelusniak, J., Si, J. S., Nickerson, J., & Goodman, M. (1992). A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Molecular Phylogenetics and Evolution, 1(2), 148–160.PubMedCrossRefGoogle Scholar
  75. Stanhope, M. J., Smith, M. R., Waddell, V. G., Porter, C. A., Shivji, M. S., & Goodman, M. (1996). Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: Convincing evidence for several superordinal clades. Journal of Molecular Evolution, 43(2), 83–92.PubMedCrossRefGoogle Scholar
  76. Steppan, S. J., Adkins, R. M., Spinks, P. Q., & Hale, C. (2005). Multigene phylogeny of the Old World mice, Murinae, reveals distinct geographic lineages and the declining utility of mitochondrial genes compared to nuclear genes. Molecular Phylogenetics and Evolution, 37(2), 370–388.PubMedCrossRefGoogle Scholar
  77. Sulimski, A. (1962). Two new rodents from Weze I (Poland). Study on the Tertiary bone breccia fauna from Weze near Dzialoszyn in Poland. Part XVIII. Acta Palaeontologica Polonica, 7, 503–512.Google Scholar
  78. Tong, Y. S. (1997). Middle Eocene small mammals from Liguanqiao Basin of Henan Province and Yuanqu Basin of Shanxi Province, central China. Palaeontologia Sinica Series C, 26, 1–256.Google Scholar
  79. Ünay, E., de Bruijn, H., & Suata-Alpaslan, F. (2006). Rodents from the Upper Miocene hominoid locality Corakyerler (Anatolia). Beitraege zur Palaeontologie, 30, 453–467.Google Scholar
  80. Wang, B. Y. (1985). Zapodidae (Rodentia, Mammalia) from the lower Oligocene of Qujing, Yunnan, China. Mainzer Geowissenschaftliche Mitteilungen, 14, 345–367.Google Scholar
  81. Wang, B. Y. (2003). Dipodidae (Rodentia, Mammalia) from the Mid-Tertiary deposits in Danghe area, Gansu, China. Vertebrata Palasiatica, 41(2), 89–103.Google Scholar
  82. Wang, B. Y. (2008). Additional rodent material from Houldjin Formation of Erenhot, Nei Mongol, China. Vertebrata Palasiatica, 46(1), 21–30.Google Scholar
  83. Wang, B. Y. (2009). On Tatalsminthus (Dipodidae, Rodentia). Vertebrata Palasiatica, 47(1), 81–84.Google Scholar
  84. Wang, B. Y., & Qiu, Z. X. (2000). Dipodidae (Rodentia, Mammalia) from the lower member of Xianshuihe Formation in Lanzhou Basin, Gansu, China. Vertebrata Palasiatica, 38(1), 10–35.Google Scholar
  85. Wang, X. M., Qiu, Z. D., Li, Q., Tomida, Y., Kimura, Y., Tseng, Z. J., et al. (2009). A new Early to Late Miocene fossiliferous region in central Nei Mongol: lithostratigraphy and biostratigraphy in Aoerban strata. Vertebrata Palasiatica, 47(2), 111–134.Google Scholar
  86. Wang, B. Y., & Wang, P. Y. (1991). Discovery of early medial Oligocene mammalian fauna from Kekeamu, Alxa Left Banner, Nei Mongol. Vertebrata Palasiatica, 29(1), 67–71.Google Scholar
  87. Wang, J., Wang, Y. J., Liu, Z. C., Li, J. Q., & Xi, P. (1999). Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1–2), 37–47.CrossRefGoogle Scholar
  88. Wray, G. A., Levinton, J. S., & Shapiro, L. H. (1996). Molecular evidence for deep precambrian divergences among metazoan phyla. Science, 274(5287), 568–573.CrossRefGoogle Scholar
  89. Wu, W. Y., Meng, J., Ni, X. J., Bi, S. D., & Wei, Y. P. (2009). The Miocene mammals from Dingshanyanchi Formation of north Junggar basin, Xinjiang. Vertebrata Palasiatica, 47(3), 208–233.Google Scholar
  90. Yang, Z. H. (2006). Computational molecular evolution. USA: Oxford University Press.CrossRefGoogle Scholar
  91. Ye, J., Meng, J., & Wu, W. Y. (2003). Oligocene/Miocene beds and faunas from Tieersihabahe in the northern Junggar Basin of Xinjiang. Bulletin of the American Museum of Natural History, 279, 568–585.CrossRefGoogle Scholar
  92. Ye, J., Meng, J., Wu, J., Wu, W. Y., & Ni, X. J. (2005). Late Eocene-Early Oligocene lithological and biological stratigraphy in the Burqin Region of Xinjiang. Vertebrata Palasiatica, 43(1), 49–60.Google Scholar
  93. Yoder, A. D., & Irwin, J. A. (1999). Phylogeny of the Lemuridae: Effects of character and taxon sampling on resolution of species relationships within Eulemur. Cladistics, 15(3), 351–361.CrossRefGoogle Scholar
  94. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693.PubMedCrossRefGoogle Scholar
  95. Zazhigin, V. S., & Lopatin, A. V. (2000a). The history of Dipodoidea (Rodentia, Mammalia) in the Miocene of Asia: 3. Allactaginae. Paleontologicheskii Zhurnal, 5, 82–94.Google Scholar
  96. Zazhigin, V. S., & Lopatin, A. V. (2000b). The history of the Dipodoidea (Rodentia, Mammalia) in the Miocene of Asia: 1. Heterosminthus (Lophocricetinae). Paleontologicheskii Zhurnal, 3, 90–102.Google Scholar
  97. Zazhigin, V. S., & Lopatin, A. V. (2001). The history of the Dipodoidea (Rodentia, Mammalia) in the Miocene of Asia: 4. Dipodinae at the Miocene-Pliocene transition. Paleontologicheskii Zhurnal, 1, 61–75.Google Scholar
  98. Zazhigin, V. S., & Lopatin, A. V. (2002). The history of the Dipodoidea (Rodentia, Mammalia) in the Miocene of Asia. 6. Lophodont Lophocricetinae. Paleontologicheskii Zhurnal, 4, 62–71.Google Scholar
  99. Zheng, S. H., Cai, B. Q., & Li, Q. (2006). The Plio-Pleistocene small mammals from Donggou section of Nihewan Basin, Hebei, China. Vertebrata Palasiatica, 44(4), 320–331.Google Scholar
  100. Zheng, H. B., Powell, C. M., Rea, D. K., Wang, J. L., & Wang, P. X. (2004). Late Miocene and mid-Pliocene enhancement of the East Asian monsoon as viewed from the land and sea. Global and Planetary Change, 41(3–4), 147–155.CrossRefGoogle Scholar
  101. Zheng, S. H., & Zhang, Z. Q. (2001). Late Miocene-Early Pleistocene biostratigraphy of the Leijiahe area, Lingtai, Gansu. Vertebrata Palasiatica, 39(3), 215–228.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Qian Zhang
    • 1
  • Lin Xia
    • 1
  • Yuri Kimura
    • 2
  • Georgy Shenbrot
    • 3
  • Zhaoqun Zhang
    • 4
  • Deyan Ge
    • 1
  • Qisen Yang
    • 1
    Email author
  1. 1.Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesChaoyang District, BeijingChina
  2. 2.Roy M. Huffington Department of Earth SciencesSouthern Methodist UniversityDallasUSA
  3. 3.Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevMidreshet Ben-GurionIsrael
  4. 4.Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesHaidian District, BeijingChina

Personalised recommendations