Evolutionary Biology

, Volume 39, Issue 2, pp 181–191 | Cite as

Adaptive Radiations in the Context of Macroevolutionary Theory: A Paleontological Perspective

  • Bruce S. LiebermanEmail author
Synthesis Paper


Adaptive radiations are often invoked anytime clades show significant bursts of diversification, but it is important to not simply assume that any radiating clade constitutes an adaptive radiation. In addition, several highly relevant macroevolutionary concepts including the Turnover Pulse Hypothesis, the Effect Hypothesis, exaptation, and species selection, have not been considered in the adaptive radiations literature. Here, these concepts are integrated into the theory of evolutionary radiations in general, and adaptive radiations in particular, and different types of evolutionary radiations are identified, including geographic radiations. Special emphasis is placed on considering the role that abiotic as opposed to biotic factors may play in motivating diversification during evolutionary radiations. Further, recent paleontological data suggesting that rather than organismal adaptation it may be principally abiotic factors, such as climate change and a taxon’s presence in a geographically complex region, that cause clades to diversify will be described. The fossil record, the source of the initial hallmark examples of adaptive radiation, now appears to show little concrete support for this phenomenon.


Adaptive radiation Macroevolution Geographic radiation Species selection Exaptation Speciation 



Thanks to Maria Pia Miglietta, Francesco Santini, and Anuschka Faucci for inviting me to participate in this special issue of the journal. Thanks to Francine Abe and Ed Wiley for discussions on the subject of adaptive radiations, and to Rob Moyle, Katherine Willmore, and two anonymous reviewers for comments on an earlier version of this paper. This research was supported by NSF-DEB-0716162.


  1. Abe F. R. (2010). The nature of evolutionary radiations with a special focus on Devonian calmoniid trilobites. Ph.D. Dissertation, University of Kansas.Google Scholar
  2. Abe, F. R., & Lieberman, B. S. (2009). The nature of evolutionary radiations: A case study involving Devonian trilobites. Evolutionary Biology, 36, 225–234.CrossRefGoogle Scholar
  3. Abe, F. R., & Lieberman, B. S. (2012). Quantifying morphological change during an evolutionary radiation of Devonian trilobites. Paleobiology, 38, 292–307.CrossRefGoogle Scholar
  4. Benton, M. J. (1996). Testing the roles of competition and expansion in tetrapod evolution. Proceedings of the Royal Society of London, Biological Sciences, Series B, 263, 641–646.CrossRefGoogle Scholar
  5. Bowler, P. J. (1996). Life’s splendid drama. Chicago: University of Chicago Press.Google Scholar
  6. Brooks, D. R., & McLennan, D. A. (1991). Phylogeny, ecology, and behavior. Chicago: University of Chicago Press.Google Scholar
  7. Cadena, C. D., Ricklefs, R. E., Jiménez, I., & Bermingham, E. (2005). Ecology: Is speciation driven by species diversity? Nature, 438, E1–E2.PubMedCrossRefGoogle Scholar
  8. Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Press.Google Scholar
  9. Cracraft, J. (1982). A nonequilibrium theory for the rate-control of speciation and extinction and the origin of macroevolutionary patterns. Systematic Zoology, 31, 348–365.CrossRefGoogle Scholar
  10. Diamond, J. M., Gilpin, M. E., & Mayr, E. (1976). Species-distance relation for birds of the Solomon Archipelago, and the paradox of the great speciators. Proceedings of the National Academy of Sciences, USA, 73, 2160–2164.CrossRefGoogle Scholar
  11. Eldredge, N. (1979). Alternative approaches to evolutionary theory. Bulletin of Carnegie Museum of Natural History, 13, 7–19.Google Scholar
  12. Eldredge, N. (1985). Unfinished Synthesis. New York: Oxford University Press.Google Scholar
  13. Eldredge, N. (1989). Macroevolutionary dynamics. New York: McGraw-Hill.Google Scholar
  14. Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process: Method and theory in comparative biology. New York: Columbia University Press.Google Scholar
  15. Eldredge, N., & Gould, S. J. (1972). Punctuated equilibrium: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco: W. H. Freeman.Google Scholar
  16. Emerson, B. C., & Kolm, N. (2005). Species diversity can drive speciation. Nature, 434, 1015–1017.PubMedCrossRefGoogle Scholar
  17. Futuyma, D. J. (1998). Evolutionary biology (3rd ed.). Sunderland, MA: Sinauer.Google Scholar
  18. Gittenberger, E. (1991). What about non-adaptive radiation? Biological Journal of the Linnean Society, 43, 263–272.CrossRefGoogle Scholar
  19. Givnish, T. J. (1997). Adaptive radiation and molecular systematics: Issues and approaches. In T. J. Givnish & K. J. Sytsma (Eds.), Molecular evolution and adaptive radiation (pp. 1–54). Cambridge: Cambridge University Press.Google Scholar
  20. Glor, R. E., Gifford, M. E., Larson, A., Losos, J. B., Rodriguez-Schettino, L., Lara, A. R. C., et al. (2004). Partial island submergence and speciation in an adaptive radiation: a multilocus analysis of the Cuban green anoles. Proceedings of the Royal Society, Biological Sciences, Series B, 271(1554), 2257–2265.CrossRefGoogle Scholar
  21. Gould, S. J. (1990). Speciation and sorting as the source of evolutionary trends, or ‘things are seldom what they seem’. In K. J. McNamara (Ed.), Evolutionary trends (pp. 3–27). London: Belhaven Press.Google Scholar
  22. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.Google Scholar
  23. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London Series B, 205(1161), 581–598.CrossRefGoogle Scholar
  24. Gould, S. J., & Vrba, E. S. (1982). Exaptation—A missing term in the science of form. Paleobiology, 8, 4–15.Google Scholar
  25. Grant, P. R., & Grant, B. R. (2008). How and why species multiply: The radiation of Darwin’s finches. Princeton, NJ: Princeton University Press.Google Scholar
  26. Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Jennings, W. B., et al. (2010). Early bursts of body size and shape evolution are rare in comparative data. Evolution, 64, 2385–2396.PubMedGoogle Scholar
  27. Harmon, L. J., Schulte, J. A., I. I., Larson, A., & Losos, J. B. (2003). Tempo and mode of evolutionary radiation in iguanian lizards. Science, 301(5635), 961–964.PubMedCrossRefGoogle Scholar
  28. Huxley, J. (1942). Evolution: The modern synthesis. London: Allen & Unwin.Google Scholar
  29. Jablonski, D. (1986). Larval ecology and macroevolution of marine invertebrates. Bulletin of Marine Science, 39, 565–587.Google Scholar
  30. Jablonski, D. (2007). Scale and hierarchy in macroevolution. Palaeontology, 50, 87–109.CrossRefGoogle Scholar
  31. Kocher, T. D. (2004). Adaptive evolution and explosive speciation: The cichlid model. Nature Genetics, 5, 288–298.CrossRefGoogle Scholar
  32. Lieberman, B. S. (1993). Systematics and biogeography of the ‘‘Metacryphaeus Group’’ Calmoniidae (Trilobita, Devonian) with comments on adaptive radiations and the geological history of the Malvinokaffric realm. Journal of Paleontology, 67, 549–570.Google Scholar
  33. Lieberman B. S. (1999). Turnover pulse in trilobites during the Acadian Orogeny. In Proceedings of the Appalachian Biogeography Symposium. Virginia Museum of Natural History Special Publications Number 7:99–108.Google Scholar
  34. Lieberman, B. S. (2000). Paleobiogeography. New York: Kluwer Academic.CrossRefGoogle Scholar
  35. Lieberman, B. S. (2001). A test of whether rates of speciation were unusually high during the Cambrian radiation. Proceedings of the Royal Society, Biological Sciences, Series B, 268, 1707–1714.CrossRefGoogle Scholar
  36. Lieberman, B. S. (2003). Taking the pulse of the Cambrian radiation. Journal of Integrative and Comparative Biology, 43, 229–237.CrossRefGoogle Scholar
  37. Lieberman, B. S., Allmon, W. D., & Eldredge, N. (1993). Levels of selection and macroevolutionary patterns in the turritellid gastropods. Paleobiology, 19, 205–215.Google Scholar
  38. Lieberman, B. S., Edgecombe, G. D., & Eldredge, N. (1991). Systematics and biogeography of the ‘‘Malvinella Group’’, Calmoniidae (Trilobita, Devonian). Journal of Paleontology, 65, 824–843.Google Scholar
  39. Lieberman, B. S., & Vrba, E. S. (1995). Hierarchy theory, selection, and sorting. BioScience, 45(6), 394–399.CrossRefGoogle Scholar
  40. Lieberman, B. S., & Vrba, E. S. (2005). Stephen Jay Gould on species selection: 30 years of insight. Paleobiology, 31(2, supplement), 113–121.CrossRefGoogle Scholar
  41. Losos, J. B. (2009). Lizards in an evolutionary tree: Ecology and adaptive radiation of anoles. Berkeley, CA: University of California Press.Google Scholar
  42. Losos, J. B., & Glor, R. E. (2003). Phylogenetic comparative methods and the geography of speciation. Trends in Ecology & Evolution, 18, 220–227.CrossRefGoogle Scholar
  43. Losos, J. B., & Miles, D. B. (2002). Testing the hypothesis that a clade has adaptively radiated: Iguanid lizard clades as a case study. American Naturalist, 160, 147–157.PubMedCrossRefGoogle Scholar
  44. Lovette, I. J., Bermingham, E., & Ricklefs, R. E. (2001). Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proceedings of the Royal Society, Biological Sciences, Series B, 269, 37–42.CrossRefGoogle Scholar
  45. Maguire, K. C., & Stigall, A. L. (2008). Paleobiogeography of Miocene Equinae of North America: A phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeography, Palaeoclimatology, Palaeoecology, 267, 175–184.CrossRefGoogle Scholar
  46. Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.Google Scholar
  47. Morrone, J. J. (2008). Evolutionary biogeography: An integrative approach with case studies. New York: Columbia University Press.Google Scholar
  48. Moyle, R. G., Filardi, C. E., Smith, C. F., & Diamond, J. (2009). Explosive Pleistocene diversification and hemispheric expansion of a “great speciator”. Proceedings of the National Academy of Sciences, USA, 106(6), 1863–1868.CrossRefGoogle Scholar
  49. Myers, C., & Lieberman, B. S. (2011). Sharks that pass in the night: Using GIS to investigate competition in the Cretaceous Western Interior Seaway. Proceedings of the Royal Society, Biological Sciences, Series B, 278(1706), 681–689.CrossRefGoogle Scholar
  50. Nee, S. (2006). Birth-death models in macroevolution. Annual Review of Ecology, Evolution, and Systematics, 37, 1–17.CrossRefGoogle Scholar
  51. Olson, M. E., & Arroyo-Santos, A. (2009). Thinking in continua: Beyond the ‘adaptive radiation’ metaphor. Bioessays, 31(12), 1337–1346.PubMedCrossRefGoogle Scholar
  52. Osborn, H. (1902). The law of adaptive radiation. American Naturalist, 36, 353–363.CrossRefGoogle Scholar
  53. Rabosky, D., & McCune, A. R. (2010). Reinventing species selection with molecular phylogenies. Trends in Ecology & Evolution, 25, 68–74.CrossRefGoogle Scholar
  54. Ricklefs, R. E., & Miles, D. B. (1994). Ecological and evolutionary inferences from morphology: An ecological perspective. In P. C. Wainwright & S. M. Reilly (Eds.), Ecological morphology: Integrative organismal biology (pp. 13–41). Chicago: University of Chicago Press.Google Scholar
  55. Rode, A. L., & Lieberman, B. S. (2005). Integrating biogeography and evolution using phylogenetics and PaleoGIS: A case study involving Devonian crustaceans. Journal of Paleontology, 79, 267–276.CrossRefGoogle Scholar
  56. Rundell, R. J., & Price, T. D. (2009). Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends in Ecology & Evolution, 24(7), 394–399.CrossRefGoogle Scholar
  57. Sanderson, M., & Donoghue, M. (1996). Reconstructing shifts in diversification rates on phylogenetic trees. Trends in Ecology & Evolution, 11, 15–20.CrossRefGoogle Scholar
  58. Savolainen, V., Anstett, M.-C., Lexer, C., Hutton, I., Clarkson, J. J., Norup, M. V., et al. (2006). Sympatric speciation in palms on an oceanic island. Nature, 44, 210–213.CrossRefGoogle Scholar
  59. Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.Google Scholar
  60. Seehausen, O. (2006). African cichlid fish: A model system in adaptive radiation research. Proceedings of the Royal Society, Biological Sciences, Series B, 273(1597), 1987–1998.CrossRefGoogle Scholar
  61. Sibley, C. G., & Ahlquist, J. E. (1990). Phylogeny and classification of birds. New Haven, CT: Yale University Press.Google Scholar
  62. Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.Google Scholar
  63. Simpson, G. G. (1953). The major features of evolution. New York: Columbia University Press.Google Scholar
  64. Stanley, S. M. (1979). Macroevolution, pattern and process. San Francisco: W. H. Freeman.Google Scholar
  65. Stigall, A. L. (2010). Speciation decline during the Late Devonian biodiversity crisis related to species invasions. PLoS One, 5(12), e15584.PubMedCrossRefGoogle Scholar
  66. Theiler, G. R., Gardenal, C. N., & Blanco, A. (1999). Patterns of evolution in Graomys griseoflavus (Rodentia, Muridae). IV. A case of rapid speciation. Journal of Evolutionary Biology, 12, 970–979.CrossRefGoogle Scholar
  67. Vogler, A., & Goldstein, P. (1997). Adaptive radiation and taxon cycles in North American tiger beetles: A cladistic perspective. In T. J. Givnish & K. J. Sytsma (Eds.), Molecular evolution and adaptive radiation (pp. 353–373). Cambridge: Cambridge University Press.Google Scholar
  68. Vrba, E. S. (1984). What is species selection? Systematic Zoology, 33, 318–328.CrossRefGoogle Scholar
  69. Vrba, E. S. (1985). Environment and evolution: Alternative causes of the temporal distribution of evolutionary events. South African Journal of Science, 81, 229–236.Google Scholar
  70. Vrba, E. S. (1987). Ecology in relation to speciation rates: Some case histories of Miocene-Recent mammal clades. Evolutionary Ecology, 1, 283–300.CrossRefGoogle Scholar
  71. Vrba, E. S. (1989). Levels of selection and sorting with special reference to the species level. Oxford Surveys in Evolutionary Biology, 6, 111–168.Google Scholar
  72. Vrba, E. S. (1992). Mammals as a key to evolutionary theory. Journal of Mammalogy, 73, 1–28.CrossRefGoogle Scholar
  73. Vrba, E. S., & Eldredge, N. (1984). Individuals, hierarchies and processes: Towards a more complete evolutionary theory. Paleobiology, 10, 146–171.Google Scholar
  74. Vrba, E. S., & Gould, S. J. (1986). The hierarchical expansion of sorting and selection: Sorting and selection cannot be equated. Paleobiology, 12, 217–228.Google Scholar
  75. Whittaker, R. J., Ladle, R. J., Araújo, M. B., Fernández-Palacios, J. M., Delgado, J. D., & Arévalo, J. R. (2007). The island immaturity—Speciation pulse model of island evolution: An alternative to the “diversity begets diversity” model. Ecography, 30, 321–327.CrossRefGoogle Scholar
  76. Wiley, E. O. (1981). Phylogenetics. New York: Wiley.Google Scholar
  77. Wiley, E. O., & Lieberman, B. S. (2011). Phylogenetics (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  78. Wiley, E. O., & Mayden, R. L. (1985). Species and speciation in phylogenetic systematics, with examples from the North American fish fauna. Annals of the Missouri Botanical Garden, 72, 596–635.CrossRefGoogle Scholar
  79. Yang, W., Cerling, T. E., & MacFadden, B. J. (1994). Fossil horses and carbon isotopes: New evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 107, 279–2669.Google Scholar
  80. Yoder, J., Clancey, E., Des Roches, S., Eastman, J., Gentry, L., Godsoe, W., et al. (2010). Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology, 23, 1581–1596.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Geology and Biodiversity InstituteUniversity of KansasLawrenceUSA

Personalised recommendations