Evolutionary Biology

, Volume 39, Issue 4, pp 568–586 | Cite as

The Evolution of Human Brain Development

  • Simon NeubauerEmail author
  • Jean-Jacques Hublin
Synthesis Paper


The human brain is a large and complex organ, setting us apart from other primates. It allows us to exhibit highly sophisticated cognitive and behavioral abilities. Therefore, our brain’s size and morphology are defining features of our species and our fossil ancestors and relatives. Endocasts, i.e., internal casts of the bony braincase, provide evidence about brain size and morphology in fossils. Based on endocasts, we know that our ancestors’ brains increased overall in size and underwent several reorganizational changes. However, it is difficult to relate evolutionary changes of size and shape of endocasts to evolutionary changes of cognition and behavior. We argue here that an understanding of the tempo and mode of brain development can help to interpret the evolution of our brain and the associated cognitive and behavioral changes. To do so, we review structural brain development, cognitive development, and ontogenetic changes of endocranial size and shape in living individuals on the one hand, and ontogenetic patterns (size increase and shape change) in fossil hominins and their evolutionary change on the other hand. Tightly integrating our knowledge on these different levels will be the key of future work on the evolution of human brain development.


Ontogeny Cognitive development Hominin Endocast 



We wish to thank Philipp Mitteroecker and Philipp Gunz who organized the wonderful workshop “Human EvoDevo: The Role of Development in Human Evolution” at the Konrad Lorenz Institute for Evolution and Cognition Research in Altenberg, Austria, and who invited us to contribute this paper. Thanks to Alyson Reid, Carolyn Rowney and Philipp Gunz for comments and discussion. Comments by Benedikt Hallgrimsson, Alexandra de Sousa and one anonymous reviewer helped to substantially improve this manuscript. This work was supported by EU FP6 Marie Curie Actions grant MRTN-CT-2005-019564 ‘EVAN’ and by the Max Planck Society.


  1. Abitbol, M. M. (1995). Reconstruction of the STS 14 (Australopithecus africanus) pelvis. American Journal of Physical Anthropology, 96, 143–158.PubMedGoogle Scholar
  2. Aiello, L. C., & Wheeler, P. (1995). The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Current Anthropology, 36, 199.Google Scholar
  3. Alemseged, Z., Spoor, F., Kimbel, W. H., Bobe, R., Geraads, D., Reed, D., et al. (2006). A juvenile early hominin skeleton from Dikika, Ethiopia. Nature, 443, 296–301.PubMedGoogle Scholar
  4. Antón, S. C. (1997). Developmental age and taxonomic affinity of the Mojokerto child, Java, Indonesia. American Journal of Physical Anthropology, 102, 497–514.PubMedGoogle Scholar
  5. Asfaw, B., Beyene, Y., Suwa, G., Walter, R. C., White, T. D., WoldeGabriel, G., et al. (1992). The earliest Acheulean from Konso-Gardula. Nature, 360, 732–735.PubMedGoogle Scholar
  6. Association, American. Psychiatric. (1994). Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association.Google Scholar
  7. Bauchinger, U., Wohlmann, A., & Biebach, H. (2005). Flexible remodeling of organ size during spring migration of the garden warbler (Sylvia borin). Zoology, 108, 97–106.PubMedGoogle Scholar
  8. Berge, C., & Goularas, D. (2010). A new reconstruction of Sts 14 pelvis (Australopithecus africanus) from computed tomography and three-dimensional modeling techniques. Journal of Human Evolution, 58, 262–272.PubMedGoogle Scholar
  9. Berge, C., Orban-Segebarth, R., & Schmid, P. (1984). Obstetrical interpretation of the australopithecine pelvic cavity. Journal of Human Evolution, 13, 573–587.Google Scholar
  10. Berger, L. R., de Ruiter, D. J., Churchill, S. E., Schmid, P., Carlson, K. J., Dirks, P. H., et al. (2010). Australopithecus sediba: A new species of Homo-like australopith from South Africa. Science, 328, 195–204.PubMedGoogle Scholar
  11. Bernier, P. J., Bedard, A., Vinet, J., Levesque, M., & Parent, A. (2002). Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proceedings of the National Academy of Sciences of the United States of America, 99, 11464–11469.PubMedGoogle Scholar
  12. Binford, L. R., & Clark Howell, F. (1981). Bones: Ancient men and modern myths. New York: Academic Press.Google Scholar
  13. Bloss, C. S., & Courchesne, E. (2007). MRI neuroanatomy in young girls with autism: A preliminary study. Journal of the American Academy of Child and Adolescent Psychiatry, 515–523.Google Scholar
  14. Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.Google Scholar
  15. Bourgeois, J. P. (2002). Synaptogenesis in the neocortex of the newborn: The ultimate frontier for individuation? In H. Lagercrantz, M. Hanson, P. Evrard, & C. H. Rodeck (Eds.), Newborn brain: Neuroscience and clinical applications (pp. 91–113). Cambridge: Cambridge University Press.Google Scholar
  16. Bourgeois, J. P., Jastreboff, P. J., & Rakic, P. (1989). Synaptogenesis in visual cortex of normal and preterm monkeys: Evidence for intrinsic regulation of synaptic overproduction. Proceedings of the National Academy of Sciences of the United States of America, 86, 4297–4301.PubMedGoogle Scholar
  17. Bräuer, G., Groden, C., Gröning, F., Kroll, A., Kupczik, K., Mbua, E., et al. (2004). Virtual study of the endocranial morphology of the matrix-filled Cranium from Eliye Springs, Kenya. Anatomical Record, 276, 113–133.PubMedGoogle Scholar
  18. Braun, D. R., Harris, J. W., Levin, N. E., McCoy, J. T., Herries, A. I., Bamford, M. K., et al. (2010). Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proceedings of the National Academy of Sciences of the United States of America, 107, 10002–10007.PubMedGoogle Scholar
  19. Brody, B. A., Kinney, H. C., Kloman, A. S., & Gilles, F. H. (1987). Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. Journal of Neuropathology and Experimental Neurology, 46, 283–301.PubMedGoogle Scholar
  20. Bromage, T. G. (1987). The biological and chronological maturation of early hominids. Journal of Human Evolution, 16, 257–272.Google Scholar
  21. Bronner-Fraser, M., & Hatten, M. B. (2003). Neurogenesis and migration. In L. R. Squire, F. E. Bloom, S. K. McConnell, J. L. Roberts, N. C. Spitzer, & M. J. Zigmond (Eds.), Fundamental neuroscience (pp. 391–416). New York: Academic Press.Google Scholar
  22. Brown, T. T., Lugar, H. M., Coalson, R. S., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. (2005). Developmental changes in human cerebral functional organization for word generation. Cerebral Cortex, 15, 275–290.PubMedGoogle Scholar
  23. Bruner, E. (2004). Geometric morphometrics and paleoneurology: Brain shape evolution in the genus Homo. Journal of Human Evolution, 47, 279–303.PubMedGoogle Scholar
  24. Bruner, E. (2010). Morphological differences in the Parietal Lobes within the human genus. Current Anthropology, 51, 77–88.Google Scholar
  25. Bruner, E., De La Cuétara, J. M., & Holloway, R. (2011). A bivariate approach to the variation of the parietal curvature in the genus homo. Anatomical Record. Google Scholar
  26. Bruner, E., Manzi, G., & Arsuaga, J. L. (2003). Encephalization and allometric trajectories in the genus Homo: Evidence from the Neandertal and modern lineages. Proceedings of the National Academy of Sciences of the United States of America, 100, 15335–15340.PubMedGoogle Scholar
  27. Bruner, E., Martin-Loeches, M., & Colom, R. (2010). Human midsagittal brain shape variation: Patterns, allometry and integration. Journal of Anatomy, 216, 589–599.PubMedGoogle Scholar
  28. Brunet, M., Guy, F., Pilbeam, D., Mackaye, H. T., Likius, A., Ahounta, D., et al. (2002). A new hominid from the Upper Miocene of Chad, Central Africa. Nature, 418, 145–151.PubMedGoogle Scholar
  29. Burbano, H. A., Hodges, E., Green, R. E., Briggs, A. W., Krause, J., Meyer, M., et al. (2010). Targeted investigation of the Neandertal genome by array-based sequence capture. Science, 328, 723–725.PubMedGoogle Scholar
  30. Carlson, K. J., Stout, D., Jashashvili, T., de Ruiter, D. J., Tafforeau, P., Carlson, K., et al. (2011). The endocast of MH1, Australopithecus sediba. Science, 333, 1402–1407.PubMedGoogle Scholar
  31. Carper, R. A., Moses, P., Tigue, Z. D., & Courchesne, E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. Neuroimage, 16, 1038–1051.PubMedGoogle Scholar
  32. Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends in Cognitive Sciences, 9, 104–110.PubMedGoogle Scholar
  33. Caviness, V. S., Kennedy, D. N., Richelme, C., Rademacher, J., & Filipek, P. A. (1996). The human brain age 7–11 years: A volumetric analysis based on magnetic resonance images. Cerebral Cortex, 6, 726–736.PubMedGoogle Scholar
  34. Chase, P. G., & Dibble, H. L. (1987). Middle Paleolithic symbolism: A review of current evidence and interpretations. Journal of Anthropological Archaeology, 6, 263–296.Google Scholar
  35. Chechik, G., Meilijson, I., & Ruppin, E. (1999). Neuronal regulation: A mechanism for synaptic pruning during brain maturation. Neural Computation, 11, 2061–2080.PubMedGoogle Scholar
  36. Cheng, H., Cao, Y., & Olson, L. (1996). Spinal cord repair in adult paraplegic rats: Partial restoration of hind limb function. Science, 273, 510–513.PubMedGoogle Scholar
  37. Cherniak, C. (1990). The bounded brain: Toward quantitative neuroanatomy. Journal of Cognitive Neuroscience, 2, 58–68.Google Scholar
  38. Conroy, G. C., Falk, D., Guyer, J., Weber, G. W., Seidler, H., & Recheis, W. (2000). Endocranial capacity in Sts 71 (Australopithecus africanus) by three-dimensional computed tomography. Anatomical Record, 258, 391–396.PubMedGoogle Scholar
  39. Conroy, G. C., & Vannier, M. W. (1987). Dental development of the Taung skull from computerized tomography. Nature, 329, 625–627.PubMedGoogle Scholar
  40. Conroy, G. C., Vannier, M. W., & Tobias, P. V. (1990). Endocranial features of Australopithecus africanus revealed by 2- and 3-D computed tomography. Science, 247, 838–841.PubMedGoogle Scholar
  41. Conroy, G. C., Weber, G. W., Seidler, H., Tobias, P. V., Kane, A., & Brunsden, B. (1998). Endocranial capacity in an Early Hominid Cranium from Sterkfontein, South Africa. Science, 280, 1730.PubMedGoogle Scholar
  42. Coqueugniot, H., & Hublin, J. J. (2007). Endocranial volume and brain growth in immature Neandertals. Periodicum Biologorum, 109, 379.Google Scholar
  43. Coqueugniot, H., & Hublin, J. J. (in press). Age-related changes of digital endocranial volume during human ontogeny: Results from an osteological reference collection. American Journal of Physical Anthropology. doi: 10.1002/ajpa.21655.
  44. Coqueugniot, H., Hublin, J. -J., Sempe, M., & Houët, F. (2005). Croissance et données transversales: réflexions sur de possibles biais méthodologiques. Le cas du périmètre crânien. XXVIIe Colloque du Groupement des Anthropologistes de Langue Française. France: Anthropobiologie: Evolution et histoire des peuplements Franc.Google Scholar
  45. Coqueugniot, H., Hublin, J. J., Veillon, F., Houët, F., & Jacob, T. (2004). Early brain growth in Homo erectus and implications for cognitive ability. Nature, 431, 299–302.PubMedGoogle Scholar
  46. Cordain, L., Watkins, B. A., & Mann, N. J. (2001). Fatty acid composition and energy density of foods available to African hominids. Evolutionary implications for human brain development. World Review of Nutrition and Dietetics, 90, 144–161.PubMedGoogle Scholar
  47. Count, E. W. (1947). Brain and body weight in man—Their antecedents in growth and evolution—A study in dynamic somatometry. Annals of the New York Academy of Sciences, 46, 993–1122.Google Scholar
  48. Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. JAMA Journal of the American Medical Association, 290, 337–344.Google Scholar
  49. Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245–254.PubMedGoogle Scholar
  50. Courchesne, E., Pierce, K., Schumann, C. M., Redcay, E., Buckwalter, J. A., Kennedy, D. P., et al. (2007). Mapping early brain development in autism. Neuron, 56, 399–413.PubMedGoogle Scholar
  51. Courchesne, E., Redcay, E., Morgan, J. T., & Kennedy, D. P. (2005). Autism at the beginning: Microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism. Development and Psychopathology, 17, 577–597.PubMedGoogle Scholar
  52. Crawford, M. A., Bloom, M., Broadhurst, C. L., Schmidt, W. F., Cunnane, S. C., Galli, C., et al. (1999). Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids, 34 Suppl, S39–S47.Google Scholar
  53. Crutcher, K. A. (1989). Tissue sections from the mature rat brain and spinal cord as substrates for neurite outgrowth in vitro: Extensive growth on gray matter but little growth on white matter. Experimental Neurology, 104, 39–54.PubMedGoogle Scholar
  54. d’Errico, F. (2003). The invisible frontier. A multiple species model for the origin of behavioral modernity. Evolutionary Anthropology, 12, 188–202.Google Scholar
  55. Dart, R. A. (1925). Australopithecus africanus: The man-ape of South Africa. Nature, 115, 195–199.Google Scholar
  56. Dawson, G., Munson, J., Webb, S. J., Nalty, T., Abbott, R., & Toth, K. (2007). Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biologcial Psychiatry, 61, 458–464.Google Scholar
  57. Dean, C., Leakey, M. G., Reid, D., Schrenk, F., Schwartz, G. T., Stringer, C., et al. (2001). Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature, 414, 628–631.PubMedGoogle Scholar
  58. Dean, M. C., & Smith, B. H. (2009). Growth and development of the Nariokotome Youth, KNM-WT 15000. In F. E. Grine, J. G. Fleagle, & R. E. Leakey (Eds.), The first humans: Origin and early evolution of the genus homo (pp. 101–120). New York: Springer.Google Scholar
  59. Dementieva, Y. A., Vance, D. D., Donnelly, S. L., Elston, L. A., Wolpert, C. M., Ravan, S. A., et al. (2005). Accelerated head growth in early development of individuals with autism. Pediatric Neurology, 32, 102–108.PubMedGoogle Scholar
  60. d’Errico, F., Zilhao, J., Julien, M., Baffier, D., & Pelegrin, J. (1998). Neanderthal acculturation in western Europe? A critical review of the evidence and its interpretation. Current Anthropology, 39, S1–S44.Google Scholar
  61. DeSilva, J., & Lesnik, J. (2006). Chimpanzee neonatal brain size: Implications for brain growth in Homo erectus. Journal of Human Evolution, 51, 207–212.PubMedGoogle Scholar
  62. DeSilva, J. M., & Lesnik, J. J. (2008). Brain size at birth throughout human evolution: A new method for estimating neonatal brain size in hominins. Journal of Human Evolution, 55, 1064–1074.PubMedGoogle Scholar
  63. Diamond, A. (1990). Developmental time course in human infants and infant monkeys, and the neural bases of, inhibitory control in reaching. Annals of the New York Academy of Sciences, 608, 637–69; discussion 669–676.Google Scholar
  64. Dienske, H. (1986). A comparative approach to the question of why human infants develop so slowly. In J. G. Else & P. C. Lee (Eds.), Primate ontogeny, cognition and social behaviour (pp. 147–154). Cambridge: Cambridge University Press.Google Scholar
  65. Durston, S., Davidson, M. C., Tottenham, N., Spicer, J., Galvan, A., Fossella, J. A., et al. (2004). Longitudinal functional MRI of the development of cognitive control. Social Neuroscience, 319, 18.Google Scholar
  66. Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., & van Engeland, H. (2001). Anatomical MRI of the developing human brain: What have we learned? Journal of the American Academy of Child and Adolescent Psychiatry, 40, 1012–1020.PubMedGoogle Scholar
  67. Falk, D. (1980). Hominid brain evolution: The approach from paleoneurology. Yearbook of Physical Anthropology, 23, 93–107.Google Scholar
  68. Falk, D. (1986). Endocranial casts and their significance for primate brain evolution. In D. R. Swindler & J. Erwin (Eds.), Comparative primate biology, Vol. 1, Systematics, evolution, and anatomy (pp. 477–490). New York: Alan R. Liss.Google Scholar
  69. Falk, D. (1987). Hominid paleoneurology. Annual Review of Anthropology, 16, 13–28.Google Scholar
  70. Falk, D., & Clarke, R. (2007). Brief communication: New reconstruction of the Taung endocast. American Journal of Physical Anthropology, 134, 529–534.PubMedGoogle Scholar
  71. Falk, D., Hildebolt, C., Smith, K., Morwood, M. J., Sutikna, T., Brown, P., et al. (2005). The brain of LB1, Homo floresiensis. Science, 308, 242–245.PubMedGoogle Scholar
  72. Falk, D., Hildebolt, C., Smith, K., Morwood, M. J., Sutikna, T., Jatmiko, et al. (2007). Brain shape in human microcephalics and Homo floresiensis. Proceedings of the National Academy of Sciences of the United States of America, 104, 2513–2518.PubMedGoogle Scholar
  73. Fragaszy, D. M., & Bard, K. (1997). Comparison of development and life history in Pan and Cebus. International Journal of Primatology, 18, 683–701.Google Scholar
  74. Fragaszy, D. M., Visalberghi, E., & Fedigan, L. M. (2004). The complete capuchin: The biology of the genus Cebus. Cambridge: Cambridge University Press.Google Scholar
  75. Gage, F. H. (2000). Mammalian neural stem cells. Science, 287, 1433–1438.PubMedGoogle Scholar
  76. Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 77–85.PubMedGoogle Scholar
  77. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861–863.PubMedGoogle Scholar
  78. Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et al. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6, 551–560.PubMedGoogle Scholar
  79. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 8174–8179.PubMedGoogle Scholar
  80. Goldman-Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child Development, 58, 601–622.PubMedGoogle Scholar
  81. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge: Belknap Press of Harvard University Press.Google Scholar
  82. Gould, E., Reeves, A. J., Graziano, M. S. A., & Gross, C. G. (1999). Neurogenesis in the neocortex of adult primates. Science, 286, 548.PubMedGoogle Scholar
  83. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., et al. (2010). A draft sequence of the Neandertal genome. Science, 328, 710–722.PubMedGoogle Scholar
  84. Green, R. E., Krause, J., Ptak, S. E., Briggs, A. W., Ronan, M. T., Simons, J. F., et al. (2006). Analysis of one million base pairs of Neanderthal DNA. Nature, 444, 330–336.PubMedGoogle Scholar
  85. Guatelli-Steinberg, D., Reid, D. J., Bishop, T. A., & Larsen, C. S. (2005). Anterior tooth growth periods in Neandertals were comparable to those of modern humans. Proceedings of the National Academy of Sciences of the United States of America, 102, 14197–14202.PubMedGoogle Scholar
  86. Gunz, P., Neubauer, S., Maureille, B., & Hublin, J. J. (2010). Brain development after birth differs between Neanderthals and modern humans. Current Biology, 20, R921–R922.PubMedGoogle Scholar
  87. Gunz, P., Neubauer, S., Golovanova, L., Doronichev, V., Maureille, B., & Hublin, J. J. (in press). A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. Journal of Human Evolution. doi: 10.1016/j.jhevol.2011.11.013.
  88. Haile-Selassie, Y. (2001). Late Miocene hominids from the Middle Awash, Ethiopia. Nature, 412, 178–181.PubMedGoogle Scholar
  89. Happé, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9, 1218–1220.PubMedGoogle Scholar
  90. Häusler, M., & Schmid, P. (1995). Comparison of the pelves of Sts 14 and AL288–1: Implications for birth and sexual dimorphism in australopithecines. Journal of Human Evolution, 29, 363–383.Google Scholar
  91. Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., et al. (2005). Magnetic resonance imaging and head circumference study of brain size in autism: Birth through age 2 years. Archives of General Psychiatry, 62, 1366–1376.PubMedGoogle Scholar
  92. Henshilwood, C. S., & Marean, C. W. (2003). The origin of modern human behavior—Critique of the models and their test implications. Current Anthropology, 44, 627–651.PubMedGoogle Scholar
  93. Herndon, J. G., Tigges, J., Anderson, D. C., Klumpp, S. A., & McClure, H. M. (1999). Brain weight throughout the life span of the chimpanzee. Journal of Comparative Neurology, 409, 567–572.PubMedGoogle Scholar
  94. Hockfield, S., & Lombroso, P. J. (1998). Development of the cerebral cortex: IX. Cortical development and experience: I. Journal of the American Academy of Child and Adolescent Psychiatry, 37, 992–993.PubMedGoogle Scholar
  95. Holliday, M. A. (1986). Body composition and energy needs during growth. In F. Falkner & J. M. Tanner (Eds.), Human growth: A comprehensive treatise (pp. 101–117). New York: Plenum Press.Google Scholar
  96. Holloway, R. L. (1970). Australopithecine endocast (Taung specimen, 1924): A new volume determination. Science, 168, 966–968.PubMedGoogle Scholar
  97. Holloway, R. L. (1978). The relevance of endocasts for studying primate brain evolution. In C. R. Noback (Ed.), Sensory systems of primates (pp. 181–200). New York: Plenum Press.Google Scholar
  98. Holloway, R. L., & Broadfield, D. C. (2011). Technical note: The midline and endocranial volume of the Taung endocast. American Journal of Physical Anthropology, 146, 319–322.PubMedGoogle Scholar
  99. Holloway, R. L., Broadfield, D. C., & Yuan, M. S. (2004). The human fossil record: Brain endocasts. The paleoneurological evidence. Hoboken, NJ: Wiley-Liss.Google Scholar
  100. Holt, A. B., Cheek, D. B., Mellits, E. D., & Hill, D. E. (1975). Brain size and the relation of the primate to the nonprimate. In D. B. Cheek (Ed.), Foetal and postnatal cellular growth: Hormones and nutrition (pp. 23–44). New York: Wiley.Google Scholar
  101. Hublin, J. J., & Coqueugniot, H. (2006). Absolute or proportional brain size: That is the question. A reply to Leigh’s (2006) comments. Journal of Human Evolution, 50, 109–113.Google Scholar
  102. Huffman, O. F. (2001). Geologic context and age of the Perning/Mojokerto Homo erectus, East Java. Journal of Human Evolution, 40, 353–362.PubMedGoogle Scholar
  103. Huffman, O. F., Zaim, Y., Kappelman, J., Ruez, D. R., de Vos, J., Rizal, Y., et al. (2006). Relocation of the 1936 Mojokerto skull discovery site near Perning, East Java. Journal of Human Evolution, 50, 431–451.PubMedGoogle Scholar
  104. Hüppi, P. S., Warfield, S., Kikinis, R., Barnes, P. D., Zientara, G. P., Jolesz, F. A., et al. (1998). Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Annals of Neurology, 43, 224–235.PubMedGoogle Scholar
  105. Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517–527.PubMedGoogle Scholar
  106. Huttenlocher, P. R. (1994). Synaptogenesis, synapse elimination, and neural plasticity in human cerebral cortex. In C. A. Nelson (Ed.), Threats to optimal development—Integrating biological, psychological and social risk factors (pp. 35–54). Hillsdale, NJ: Erlbaum.Google Scholar
  107. Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167–178.PubMedGoogle Scholar
  108. Isaac, G. (1978). The food-sharing behavior of protohuman hominids. Scientific American, 238, 90–108.PubMedGoogle Scholar
  109. Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press.Google Scholar
  110. Jernigan, T. L., Zisook, S., Heaton, R. K., Moranville, J. T., Hesselink, J. R., & Braff, D. L. (1991). Magnetic resonance imaging abnormalities in lenticular nuclei and cerebral cortex in schizophrenia. Archives of General Psychiatry, 48, 881–890.PubMedGoogle Scholar
  111. Jolicoeur, P., Baron, G., & Cabana, T. (1988). Cross-sectional growth and decline of human stature and brain weight in 19th-century Germany. Growth, Development, and Aging, 52, 201–206.PubMedGoogle Scholar
  112. Jordaan, H. V. (1976). Newborn: Adult brain ratios in hominid evolution. American Journal of Physical Anthropology, 44, 271–278.PubMedGoogle Scholar
  113. Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology: Issues, News, and Reviews, 9, 156–185.Google Scholar
  114. Kappeler, P. M., & Pereira, M. E. (2003). Primate life histories and socioecology. Chicago: University of Chicago Press.Google Scholar
  115. Karasov, W. H., Pinshow, B., Starck, J. M., & Afik, D. (2004). Anatomical and histological changes in the alimentary tract of migrating blackcaps (Sylvia atricapilla): A comparison among fed, fasted, food-restricted, and refed birds. Physiological and Biochemical Zoology, 77, 149–160.PubMedGoogle Scholar
  116. Keirstead, H. S., Hasan, S. J., Muir, G. D., & Steeves, J. D. (1992). Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 89, 11664–11668.PubMedGoogle Scholar
  117. Kennedy, G. E. (2005). From the ape’s dilemma to the weanling’s dilemma: Early weaning and its evolutionary context. Journal of Human Evolution, 48, 123–145.PubMedGoogle Scholar
  118. Kibii, J. M., Churchill, S. E., Schmid, P., Carlson, K. J., Reed, N. D., de Ruiter, D. J., et al. (2011). A partial pelvis of Australopithecus sediba. Science, 333, 1407–1411.PubMedGoogle Scholar
  119. Klein, R. G. (2000). Archeology and the evolution of human behavior. Evolutionary Anthropology: Issues, News, and Reviews, 9, 17–36.Google Scholar
  120. Kornack, D. R., & Rakic, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proceedings of the National Academy of Sciences of the United States of America, 96, 5768–5773.PubMedGoogle Scholar
  121. Lainhart, J. E., Piven, J., Wzorek, M., Landa, R., Santangelo, S. L., Coon, H., et al. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 282–290.PubMedGoogle Scholar
  122. Leakey, M. G., Feibel, C. S., McDougall, I., & Walker, A. (1995). New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature, 376, 565–571.PubMedGoogle Scholar
  123. Leigh, S. R. (2004). Brain growth, life history, and cognition in primate and human evolution. American Journal of Primatology, 62, 139–164.PubMedGoogle Scholar
  124. Leigh, S. R. (2006). Brain ontogeny and life history in Homo erectus. Journal of Human Evolution, 50, 104–108.PubMedGoogle Scholar
  125. Leigh, S. R., & Blomquist, G. E. (2007). Life history. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 396–407). Oxford: Oxford University Press.Google Scholar
  126. Leonard, W. R., & Robertson, M. L. (1992). Nutritional requirements and human evolution: A bioenergetics model. American Journal of Human Biology, 4, 179–195.Google Scholar
  127. Leonard, W. R., & Robertson, M. L. (1994). Evolutionary perspectives on human nutrition: The influence of brain and body size on diet and metabolism. American Journal of Human Biology, 6, 77–88.Google Scholar
  128. Lieberman, D. E., McBratney, B. M., & Krovitz, G. (2002). The evolution and development of cranial form in Homo sapiens. Proceedings of the National Academy of Sciences of the United States of America, 99, 1134–1139.PubMedGoogle Scholar
  129. Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A., et al. (2003). Developmental differences in diffusion measures of cortical fiber tracts. Journal of Cognitive Neuroscience, 15, S58–S75.Google Scholar
  130. Lovejoy, C. O., Heiple, K. G., & Burstein, A. H. (1973). The gait of Australopithecus. American Journal of Physical Anthropology, 38, 757–779.PubMedGoogle Scholar
  131. Macchiarelli, R., Bondioli, L., Debénath, A., Mazurier, A., Tournepiche, J. F., Birch, W., et al. (2006). How Neanderthal molar teeth grew. Nature, 444, 748–751.PubMedGoogle Scholar
  132. Marchand, F. (1902). Über das Hirngewicht des Menschen. Leipzig: B.G. Teubner.Google Scholar
  133. Martin, R. D. (1983). Human brain evolution in an ecological context. 52nd James Arthur lecture on the evolution of the human brain. New York: American Museum of Natural History.Google Scholar
  134. McBrearty, S., & Brooks, A. S. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.PubMedGoogle Scholar
  135. McHenry, H. M. (1994). Behavioral ecological implications of early hominid body size. Journal of Human Evolution, 27, 77–87.Google Scholar
  136. McHenry, H. M., & Coffing, K. (2000). Australopithecus to Homo: Transformations in Body and Mind. Annual review of Anthropology, 29, 125–146.Google Scholar
  137. Mink, J. W., Blumenschine, R. J., & Adams, D. B. (1981). Ratio of central nervous system to body metabolism in vertebrates: Its constancy and functional basis. American Journal of Physiology, 241, R203–R212.PubMedGoogle Scholar
  138. Molliver, M. E., Kostović, I., & van der Loos, H. (1973). The development of synapses in cerebral cortex of the human fetus. Brain Research, 50, 403–407.PubMedGoogle Scholar
  139. Mraz, K. D., Green, J., Dumont-Mathieu, T., Makin, S., & Fein, D. (2007). Correlates of head circumference growth in infants later diagnosed with autism spectrum disorders. Journal of Child Neurology, 22, 700–713.PubMedGoogle Scholar
  140. Mrzljak, L., Uylings, H. B., Van Eden, C. G., & Judás, M. (1990). Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Progress in Brain Research, 85, 185–222.PubMedGoogle Scholar
  141. Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16, 1227–1233.PubMedGoogle Scholar
  142. Neubauer, S., Gunz, P., & Hublin, J. J. (2009). The pattern of endocranial ontogenetic shape changes in humans. Journal of Anatomy, 215, 240–255.PubMedGoogle Scholar
  143. Neubauer, S., Gunz, P., & Hublin, J. J. (2010). Endocranial shape changes during growth in chimpanzees and humans: A morphometric analysis of unique and shared aspects. Journal of Human Evolution, 59, 555–566.PubMedGoogle Scholar
  144. Neubauer, S., Gunz, P., Mitteroecker, P., & Weber, G. W. (2004). Three-dimensional digital imaging of the partial Australopithecus africanus endocranium MLD 37/38. Canadian Association of Radiologists Journal, 55, 271–278.PubMedGoogle Scholar
  145. Neubauer, S., Gunz, P., Schwarz, U., Hublin, J. J., & Boesch, C. (in press). Endocranial volumes in an ontogenetic sample of chimpanzees from the taï forest national park, ivory coast. American Journal of Physical Anthropology. doi: 10.1002/ajpa.21641.
  146. Olesen, P. J., Nagy, Z., Westerberg, H., & Klingberg, T. (2003). Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Cognitive Brain Research, 18, 48–57.PubMedGoogle Scholar
  147. Pakkenberg, B., & Gundersen, H. J. (1997). Neocortical neuron number in humans: Effect of sex and age. Journal of Comparative Neurology, 384, 312–320.PubMedGoogle Scholar
  148. Pakkenberg, B., Pelvig, D., Marner, L., Bundgaard, M. J., Gundersen, H. J., Nyengaard, J. R., et al. (2003). Aging and the human neocortex. Experimental Gerontology, 38, 95–99.PubMedGoogle Scholar
  149. Passingham, R. E. (1982). The human primate. San Francisco: WH Freeman.Google Scholar
  150. Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., et al. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283, 1908–1911.PubMedGoogle Scholar
  151. Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874–887.PubMedGoogle Scholar
  152. Ponce de León, M. S., Golovanova, L., Doronichev, V., Romanova, G., Akazawa, T., Kondo, O., et al. (2008). Neanderthal brain size at birth provides insights into the evolution of human life history. Proceedings of the National Academy of Sciences of the United States of America, 105, 13764–13768.PubMedGoogle Scholar
  153. Purves, D. (1994). Neural activity and the growth of the brain. Cambridge, UK: Cambridge University.Google Scholar
  154. Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. Journal of Comparative Neurology, 145, 61–83.PubMedGoogle Scholar
  155. Rakic, P. (1974). Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition. Science, 183, 425–427.PubMedGoogle Scholar
  156. Ramirez Rozzi, F. V., & Bermudez De Castro, J. M. (2004). Surprisingly rapid growth in Neanderthals. Nature, 428, 936–939.PubMedGoogle Scholar
  157. Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119, 1763–1774.PubMedGoogle Scholar
  158. Rengachary, S. S., & Ellenbogen, R. G. (2005). Principles of neurosurgery. Edingurgh: Elsevier Mosby.Google Scholar
  159. Rice, S. H. (2002). The role of heterochrony in primate brain evolution. In N. Minugh-Purvis & K. J. McNamara (Eds.), Human evolution through developmental change (pp. 154–170). Baltimore: The John Hopkins University Press.Google Scholar
  160. Rilling, J. K., & Insel, T. R. (1999). The primate neocortex in comparative perspective using magnetic resonance imaging. Journal of Human Evolution, 37, 191–223.PubMedGoogle Scholar
  161. Robson, S. L., & Wood, B. (2008). Hominin life history: Reconstruction and evolution. Journal of Anatomy, 212, 394–425.PubMedGoogle Scholar
  162. Rosenberg, K. R., & Trevathan, W. (1996). Bipedalism and human birth: The obstetrical dilemma revisited. Evolutionary Anthropology: Issues, News, and Reviews, 4, 161–168.Google Scholar
  163. Rosenberg, K., & Trevathan, W. (2002). Birth, obstetrics and human evolution. BJOG International Journal of Obstetrics and Gynaecology, 109, 1199–1206.Google Scholar
  164. Ruff, C. B. (2010). Body size and body shape in early hominins—Implications of the Gona pelvis. Journal of Human Evolution, 58, 166–178.PubMedGoogle Scholar
  165. Ruff, C. B., Trinkaus, E., & Holliday, T. W. (1997). Body mass and encephalization in Pleistocene Homo. Nature, 387, 173–176.PubMedGoogle Scholar
  166. Sadakata, T., Washida, M., Iwayama, Y., Shoji, S., Sato, Y., Ohkura, T., et al. (2007). Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. Journal of Clinical Investigation, 117, 931–943.PubMedGoogle Scholar
  167. Sartono, S., Tyler, D. E., & Krantz, G. S. (1993). A new Homo erectus skull from Sangiran, Java: an announcement. In R. E. Bower & S. Sartono (Eds.), Human evolution in its ecological context. Pithecanthropus Centennial foundation (pp. 207–210). Leiden: Leiden University.Google Scholar
  168. Schmid, P. (1983). Eine Rekonstruktion des Skelettes von A.L. 288–1 (Hadar) und deren Konsequenzen. Folia Primatologica, 40, 283–306.Google Scholar
  169. Schnell, L., & Schwab, M. E. (1990). Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature, 343, 269–272.PubMedGoogle Scholar
  170. Schultz, A. H. (1940). Growth and development of the chimpanzee. Contributions to Embryology, 28, 1–63.Google Scholar
  171. Schultz, A. H. (1941). The relative size of the cranial capacity in primates. American Journal of Physical Anthropology, 28, 273–287.Google Scholar
  172. Schumann, C. M., Bloss, C. S., Barnes, C. C., Wideman, G. M., Carper, R. A., Akshoomoff, N., et al. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. Journal of Neuroscience, 30, 4419–4427.PubMedGoogle Scholar
  173. Semaw, S., Rogers, M. J., Quade, J., Renne, P. R., Butler, R. F., Dominguez-Rodrigo, M., et al. (2003). 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. Journal of Human Evolution, 45, 169–177.PubMedGoogle Scholar
  174. Senut, B., Pickford, M., Gommery, D., Mein, P., Cheboi, K., & Coppens, Y. (2001). First hominid from the Miocene (Lukeino Formation, Kenya). Comptes Rendus de l’Académie des Sciences, 332, 137–144.Google Scholar
  175. Simpson, S. W., Quade, J., Levin, N. E., Butler, R., Dupont-Nivet, G., Everett, M., et al. (2008). A female Homo erectus pelvis from Gona, Ethiopia. Science, 322, 1089–1092.PubMedGoogle Scholar
  176. Smith, T. M. (2004). Incremental development of primate dental enamel. Ph.D. Thesis, Stony Brook University.Google Scholar
  177. Smith, T. M., Tafforeau, P., Reid, D. J., Grün, R., Eggins, S., Boutakiout, M., et al. (2007a). Earliest evidence of modern human life history in North African early Homo sapiens. Proceedings of the National Academy of Sciences of the United States of America, 104, 6128–6133.PubMedGoogle Scholar
  178. Smith, T. M., Tafforeau, P., Reid, D. J., Pouech, J., Lazzari, V., Zermeno, J. P., et al. (2010). Dental evidence for ontogenetic differences between modern humans and Neanderthals. Proceedings of the National Academy of Sciences of the United States of America, 107, 20923–20928.PubMedGoogle Scholar
  179. Smith, B. H., & Tompkins, R. L. (1995). Toward a life history of the Hominidae. Annual Review of Anthropology, 24, 257–279.Google Scholar
  180. Smith, T. M., Toussaint, M., Reid, D. J., Olejniczak, A. J., & Hublin, J. J. (2007b). Rapid dental development in a Middle Paleolithic Belgian Neanderthal. Proceedings of the National Academy of Sciences of the United States of America, 104, 20220–20225.PubMedGoogle Scholar
  181. Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309–315.PubMedGoogle Scholar
  182. Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859–861.PubMedGoogle Scholar
  183. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. Journal of Neuroscience, 24, 8223–8231.PubMedGoogle Scholar
  184. Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59, 184–192.PubMedGoogle Scholar
  185. Stoller, M. K. (1995). The obstetric pelvis and mechanism of labor in nonhuman primates. Ph.D. Thesis, University of Chicago.Google Scholar
  186. Sultana, R., Yu, C. E., Yu, J., Munson, J., Chen, D., Hua, W., et al. (2002). Identification of a novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of autistic twins. Genomics, 80, 129–134.PubMedGoogle Scholar
  187. Swisher, C. C., Curtis, G. H., Jacob, T., Getty, A. G., Suprijo, A., & Widiasmoro, (1994). Age of the earliest known hominids in Java, Indonesia. Science, 263, 1118–1121.PubMedGoogle Scholar
  188. Tague, R. G., & Lovejoy, C. O. (1986). The obstetric pelvis of A.L. 288–1 (Lucy). Journal of Human Evolution, 15, 237–255.Google Scholar
  189. Tague, R. G., & Lovejoy, C. O. (1998). AL 288–1—Lucy or Lucifer: gender confusion in the Pliocene. Journal of Human Evolution, 35, 75–94.PubMedGoogle Scholar
  190. Tobias, P. V. (2001). Re-creating ancient hominid virtual endocasts by CT-scanning. Clinical Anatomy, 14, 134–141.PubMedGoogle Scholar
  191. Trevathan, W. (1987). Human birth: An evolutionary perspective. New York: Aldine de Gruyter.Google Scholar
  192. Ungar, P. S., Grine, F. E., Teaford, M. F., & El Zaatari, S. (2006). Dental microwear and diets of African early Homo. Journal of Human Evolution, 50, 78–95.PubMedGoogle Scholar
  193. Ungar, P. S., Krueger, K. L., Blumenschine, R. J., Njau, J., & Scott, R. S. (2011). Dental microwear texture analysis of hominins recovered by the Olduvai Landscape Paleoanthropology Project, 1995–2007. Journal of Human Evolution, doi: 10.1016/j.jhevol.2011.04.006.
  194. Vekua, A., Lordkipanidze, D., Rightmire, G. P., Agusti, J., Ferring, R., Maisuradze, G., et al. (2002). A new skull of early Homo from Dmanisi, Georgia. Science, 297, 85–89.PubMedGoogle Scholar
  195. Vinicius, L. (2005). Human encephalization and developmental timing. Journal of Human Evolution, 49, 762–776.PubMedGoogle Scholar
  196. Voineagu, I., Wang, X., Johnston, P., Lowe, J. K., Tian, Y., Horvath, S., et al. (2011). Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 474, 380–384.PubMedGoogle Scholar
  197. Volpe, J. J. (2000). Overview: Normal and abnormal human brain development. Mental Retardation and Developmental Disabilities Research Reviews, 6, 1–5.PubMedGoogle Scholar
  198. Von Koenigswald, G. H. R. (1936). Ein fossiler Hominide aus dem Altpleistocän Ostjavas. De Ingenieur in Nederlandsch-Indië, Mijnbouw & Geologie, De Mijningenieur, 4, 149–157.Google Scholar
  199. Von Koenigswald, G. H. R. (1940). Neue Pithecanthropus-Funde 1936–1938. Wetenschapelijke Mededeelingen van den Dienst van den Mijnbouw, 28, 1–232.Google Scholar
  200. Vrba, E. S. (1998). Multiphasic growth models and the evolution of prolonged growth exemplified by human brain evolution. Journal of Theoretical Biology, 190, 227–239.PubMedGoogle Scholar
  201. Walker, A., & Leakey, R. E. (1993). The Nariokotome Homo erectus skeleton. Cambridge, MA: Harvard University Press.Google Scholar
  202. Walker, A., & Ruff, C. B. (1993). The reconstruction of the pelvis. In A. Walker & R. Leakey (Eds.), The Nariokotome Homo erectus Skeleton (pp. 221–233). Cambridge, MA: Harvard University Press.Google Scholar
  203. Wanifuchi, H., Shimizu, T., & Maruyama, T. (2002). Age-related changes in the proportion of intracranial cerebrospinal fluid space measured using volumetric computerized tomography scanning. Journal of Neurosurgery, 97, 607–610.PubMedGoogle Scholar
  204. Weaver, T. D., & Hublin, J. J. (2009). Neandertal birth canal shape and the evolution of human childbirth. Proceedings of the National Academy of Sciences of the United States of America, 106, 8151–8156.PubMedGoogle Scholar
  205. Webb, S. J., Monk, C. S., & Nelson, C. A. (2001). Mechanisms of postnatal neurobiological development: Implications for human development. Developmental Neuropsychology, 19, 147–171.PubMedGoogle Scholar
  206. Webb, S. J., Nalty, T., Munson, J., Brock, C., Abbott, R., & Dawson, G. (2007). Rate of head circumference growth as a function of autism diagnosis and history of autistic regression. Journal of Child Neurology, 22, 1182–1190.PubMedGoogle Scholar
  207. White, T. D., Suwa, G., & Asfaw, B. (1994). Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature, 371, 306–312.PubMedGoogle Scholar
  208. Williams, R. W., & Herrup, K. (1988). The control of neuron number. Annual Review of Neuroscience, 11, 423–453.PubMedGoogle Scholar
  209. Wynn, T., & Coolidge, F. L. (2004). The expert Neandertal mind. Journal of Human Evolution, 46, 467–487.PubMedGoogle Scholar
  210. Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–70). Oxford: Blackwell Scientific.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany

Personalised recommendations