Evolutionary Biology

, Volume 39, Issue 3, pp 311–323 | Cite as

The Evolution of Positive Allometry of Weaponry in Horned Lizards (Phrynosoma)

Research Article


The allometry of weapons and other conspicuous structures has long fascinated biologists. Recently, a debate has arisen about the roles of sexual and natural selection in driving the allometry of structures, with some authors suggesting that positive allometry is exclusively the result of sexual selection. Although some studies, often focusing on weapons, support this hypothesis, others have shown that many naturally selected structures also exhibit positive allometry. We study the allometry of the cranial horns in 14 species of horned lizards (Phrynosoma). These horns are purely defensive weapons and so are under natural, as opposed to sexual, selection. In almost all cases, the length of these horns is positively allometric through ontogeny (intraspecifically) and through evolution (interspecifically). Our findings demonstrate that positive allometry can be the product of natural selection, suggesting that the function of structures may dictate allometry and not the type of selection. For example, it is possible that weapons tend to be positively allometric. Our findings also suggest that longer horns may arise through the prolongation of horn growth, and that the horns that are most effective at defense from predators attacking a lizard from above are integrated with one another. Finally, we find that species with unusual horn morphologies have diverged from other species in their horn allometries, indicating that the evolution of morphological diversity can be mediated through the evolution of allometry.


Allometry Evolution Horns Lizards Morphometrics 

Supplementary material

11692_2011_9147_MOESM1_ESM.docx (69 kb)
Supplementary material 1 (DOCX 68 kb)


  1. Alberch, P., Gould, S. J., Oster, G. F., & Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology, 5, 296–317.Google Scholar
  2. Arnold, S. J. (1983). Morphology, performance and fitness. American Zoologist, 23, 347–361.Google Scholar
  3. Baldauf, S. A., Bakker, T. C., Herder, F., Kullmann, H., & Thunken, T. (2010). Male mate choice scales female ornament allometry in a cichlid fish. BMC Evolutionary Biology, 10, 301.PubMedCrossRefGoogle Scholar
  4. Bénazéraf, B., Francois, P., Baker, R. E., Denans, N., Little, C. D., & Pourqui, O. (2010). A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature, 466, 248–252.PubMedCrossRefGoogle Scholar
  5. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289–300.Google Scholar
  6. Bergmann, P. J., Meyers, J. J., & Irschick, D. J. (2009). Directional evolution of stockiness coevolves with ecology and locomotion in lizards. Evolution, 63, 215–227.PubMedCrossRefGoogle Scholar
  7. Bergstrom, C. A. (2002). Fast-start swimming performance and reduction in lateral plate number in threespine stickleback. Canadian Journal of Zoology, 80, 207–213.CrossRefGoogle Scholar
  8. Bickel, R., & Losos, J. B. (2002). Patterns of morphological variation and correlates of habitat use in chameleons. Biological Journal of the Linnean Society, 76, 91–103.CrossRefGoogle Scholar
  9. Bonduriansky, R. (2006). Convergent evolution of sexual shape dimorphism in Diptera. Journal of Morphology, 267, 602–611.PubMedCrossRefGoogle Scholar
  10. Bonduriansky, R. (2007). Sexual selection and allometry: A reappraisal of the evidence and ideas. Evolution, 61, 838–849.PubMedCrossRefGoogle Scholar
  11. Brainerd, E. L., & Patek, S. N. (1998). Vertebral column morphology, c-start curvature, and the evolution of mechanical defenses in Tetraodontiform fishes. Copeia, 1998, 971–984.CrossRefGoogle Scholar
  12. Bro-Jorgensen, J. (2007). The intensity of sexual selection predicts weapon size in male bovids. Evolution, 61, 1313–1326.CrossRefGoogle Scholar
  13. Caro, T. M. (2005). Morphological and physiological defenses. Antipredator defenses in birds and mammals (pp. 305–333). Chicago, USA: Chicago University Press.Google Scholar
  14. Caro, T. M., Graham, C. M., Stoner, C. J., & Flores, M. M. (2003). Correlates of horn and antler shape in bovids and cervids. Behavioral Ecology and Sociobiology, 55, 32–41.CrossRefGoogle Scholar
  15. Clarke, M. R. B. (1980). The reduced major axis of a bivariate sample. Biometrika, 67, 441–446.CrossRefGoogle Scholar
  16. Clobert, J., Garland, T., Jr., & Barbault, R. (1998). The evolution of demographic tactics in lizards: A test of some hypotheses concerning life history evolution. Journal of Evolutionary Biology, 11, 329–364.Google Scholar
  17. Cooper, N., & Purvis, A. (2009). What factors shape rates of phenotypic evolution? A comparative study of cranial morphology of four mammalian clades. Journal of Evolutionary Biology, 22, 1024–1035.PubMedCrossRefGoogle Scholar
  18. Edmunds, M. (1974). Defense in animals: A survey of anti-predator defenses. Essex, UK: Longman Group Ltd.Google Scholar
  19. Emlen, D. J. (1996). Artificial selection on horn length-body size allometry in the horned beetle Onthophagus acuminatus. Evolution, 50, 1219–1230.CrossRefGoogle Scholar
  20. Emlen, D. J., Lavine, L. C., & Ewen-Campen, B. (2007). On the origin and evolutionary diversification of beetle horns. Proceedings of the National Academy of Sciences, 104(suppl. 1), 8661–8668.CrossRefGoogle Scholar
  21. Emlen, D. J., Marangelo, J., Ball, B., & Cunningham, C. W. (2005). Diversity in the weapons of sexual selection: Horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution, 59, 1060–1084.PubMedGoogle Scholar
  22. Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.CrossRefGoogle Scholar
  23. Fitch, H. S. (1981). Sexual size differences in reptiles. University of Kansas Museum Natural History Miscellaneous Publications, 70, 1–72.Google Scholar
  24. Freckleton, R. P., & Harvey, P. H. (2006). Detecting non-Brownian trait evolution in adaptive radiations. PLOS Biology, 4, 2104–2111.CrossRefGoogle Scholar
  25. Garland, T., Harvey, P. H., & Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology, 41, 18–32.Google Scholar
  26. Gerber, S., Eble, G. J., & Neige, P. (2008). Allometric space and allometric disparity: A developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution, 62, 1450–1457.PubMedCrossRefGoogle Scholar
  27. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293, 2248–2251.PubMedCrossRefGoogle Scholar
  28. Goldbogen, J. A., Potvin, J., & Shadwick, R. E. (2010). Skull and buccal cavity allometry increase mass-specific engulfment capacity in fin whales. Proceedings of the Royal Society Series B, 277, 861–868.CrossRefGoogle Scholar
  29. Gonzalez-Voyer, A., Winberg, S., & Kolm, N. (2009). Distinct evolutionary patterns of brain and body size during adaptive radiation. Evolution, 63, 2266–2274.PubMedCrossRefGoogle Scholar
  30. Gould, S. J. (1973). Positive allometry of antlers in the “Irish Elk”, Megaloceros giganteus. Nature, 244, 375–376.CrossRefGoogle Scholar
  31. Gould, S. J. (1974). The origin and function of ‘bizarre’ structures: Antler size and skull size in the ‘Irish Elk’, Megaloceros giganteus. Evolution, 28, 191–220.CrossRefGoogle Scholar
  32. Greene, H. W. (1988). Antipredator mechanisms in reptiles. In C. Gans & R. B. Huey (Eds.), Biology of the reptilia Volume 16 Ecology B (pp. 1–152). New York, USA: Alan R. Liss, Inc.Google Scholar
  33. Hallgrimsson, B., Jamniczky, H., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36, 355–376.CrossRefGoogle Scholar
  34. Hopper AF, Hart NH. (1985). Foundations of animal development. New York, USA: Oxford University Press. xii + 595 p.Google Scholar
  35. Huxley, J. S. (1932). Problems of relative growth. London, UK: Methuen & Co. Ltd.Google Scholar
  36. Jamniczky, H. A., Boughner, J. C., Rolian, C., Gonzalez, P. N., Powell, C. D., Schmidt, E. J., et al. (2010). Rediscovering Waddington in the post-genomic age. BioEssays, 32, 553–558.PubMedCrossRefGoogle Scholar
  37. Klingenberg, C. P. (2005). Developmental constraints, modules and evolvability. In B. Hallgrímsson & B. K. Hall (Eds.), Variation (pp. 219–247). San Diego, USA: Academic Press.CrossRefGoogle Scholar
  38. Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology and Systematics, 39, 115–132.CrossRefGoogle Scholar
  39. Klingenberg, C. P. (2010). There’s something afoot in the evolution of ontogenies. BMC Evolutionary Biology, 10, 221–222.PubMedCrossRefGoogle Scholar
  40. Kodric-Brown, A., Sibley, R. M., & Brown, J. H. (2006). The allometry of ornaments and weapons. Proceedings of the National Academy of Sciences, 103, 8733–8738.CrossRefGoogle Scholar
  41. Leache, A. D., & McGuire, J. A. (2006). Phylogenetic relationships of horned lizards (Phrynosoma) based on nuclear and mitochondrial data: Evidence for a misleading mitochondrial gene tree. Molecular Phylogenetics and Evolution, 39, 628–644.PubMedCrossRefGoogle Scholar
  42. Lima, S. L., & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology, 68, 619–640.CrossRefGoogle Scholar
  43. Losos, J. B., Mouton, P. L. F. N., Bickel, R., Cornelius, I., & Ruddock, L. (2002). The effect of body armature on escape behaviour in cordylid lizards. Animal Behaviour, 64, 313–321.CrossRefGoogle Scholar
  44. Lundrigan, B. (1996). Morphology of horns and fighting behavior in the family Bovidae. Journal of Mammalogy, 77, 462–475.CrossRefGoogle Scholar
  45. Luxbacher, A. M., & Knouft, J. H. (2009). Assessing concurrent patterns of environmental niche and morphological evolution among species of horned lizards (Phrynosoma). Journal of Evolutionary Biology, 22, 1669–1678.PubMedCrossRefGoogle Scholar
  46. Maddison, W. P., & Maddison, D. R. (2010). Mesquite: A modular system for evolutionary analysis v.2.73. http://mesquiteproject.org.
  47. Meyers, J. J., Herrel, A., & Nishikawa, K. C. (2006). Morphological correlates of ant eating in horned lizards (Phrynosoma). Biological Journal of the Linnean Society, 89, 13–24.CrossRefGoogle Scholar
  48. Middendorf, G. A., Sherbrooke, W. C., & Braun, E. J. (2001). Comparison of blood squirted from the circumorbital sinus and systemic blood in a horned lizard, Phrynosoma cornutum. The Southwestern Naturalist, 46, 384–387.CrossRefGoogle Scholar
  49. Moczek, A. P., Hunt, J., Emlen, D. J., & Simmons, L. W. (2002). Threshold evolution in exotic populations of a polyphenic beetle. Evolutionary Ecology Research, 4, 587–602.Google Scholar
  50. Montanucci, R. R. (1987). A phylogenetic study of the horned lizards, genus Phrynosoma, based on skeletal and external morphology. Contribution in Science, 390, 1–36.Google Scholar
  51. Montanucci, R. R. (1989). The relationship of morphology to diet in the horned lizard genus Phrynosoma. Herpetologica, 45, 208–216.Google Scholar
  52. Okada, K., & Miyatake, T. (2009). Genetic correlations between weapons, body shape and fighting behaviour in the horned beetle Gnatocerus cornutus. Animal Behaviour, 77, 1057–1065.CrossRefGoogle Scholar
  53. Packer, C. (1983). Sexual dimorphism: The horns of African antelope. Science, 221, 1191–1193.PubMedCrossRefGoogle Scholar
  54. Pianka, E. R., & Parker, W. S. (1975). Ecology of horned lizards: A review with special reference to Phrynosoma platyrhinos. Copeia, 1975, 141–162.CrossRefGoogle Scholar
  55. Polly, P. D., Head, J. J., & Cohn, M. J. (2001). Testing modularity and dissociation: the evolution of regional proportions in snakes. In M. L. Zelditch (Ed.), Beyond heterochrony: The evolution of development (pp. 305–335). New York: Wiley-Liss, Inc.Google Scholar
  56. Powell, G. L., & Russell, A. P. (1985). Growth and sexual size dimorphism in Alberta populations of the eastern short-horned lizard, Phrynosoma douglassi brevirostre. Canadian Journal of Zoology, 63, 139–154.CrossRefGoogle Scholar
  57. Powell, G. L., Russell, A. P., & Ryan, M. J. (2002). Ontogenetic scaling of the cranial horn array in Phrynosoma orbiculare (Squamata: Phrynosomatidae). Journal of Herpetology, 36, 578–589.Google Scholar
  58. Presch, W. (1969). Evolutionary osteology and relationships of the horned lizard genus Phrynosoma (Family Iguanidae). Copeia, 1969, 250–275.CrossRefGoogle Scholar
  59. R Core Development Team. (2010). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. www.r-project.org.
  60. Revell, L. J. (2009). Size-correction and principal components for interspecific comparative studies. Evolution, 63, 3258–3268.PubMedCrossRefGoogle Scholar
  61. Revell, L. J., & Collar, D. C. (2009). Phylogenetic analysis of the evolutionary correlation using likelihood. Evolution, 63, 1090–1100.PubMedCrossRefGoogle Scholar
  62. Ricker, W. E. (1984). Computation and uses of central trend lines. Canadian Journal of Zoology, 62, 1897–1905.CrossRefGoogle Scholar
  63. Saporito, R. A., Isola, M., Maccachero, V. C., Condon, K., & Donnelly, M. A. (2010). Ontogenetic scaling of poison glands in a dendrobatid poison frog. Journal of Zoology (London), 282, 238–245.CrossRefGoogle Scholar
  64. Schmidt, M., & Fischer, M. S. (2009). Morphological integration in mammalian limb proportions: dissociation between function and development. Evolution, 63, 749–766.PubMedCrossRefGoogle Scholar
  65. Schulte-Hostedde, A. I., Kuula, S., Martin, C., Schank, C. C. M., & Lesbarreres, D. (2011). Allometry and sexually dimorphic traits in male anurans. Journal of Evolutionary Biology, 24, 1154–1159.PubMedCrossRefGoogle Scholar
  66. Sherbrooke, W. C. (1987). Defensive head posture in horned lizards (Phrynosoma: Sauria: Iguanidae). The Southwestern Naturalist, 32, 512–515.CrossRefGoogle Scholar
  67. Sherbrooke, W. C. (2002). Do vertebral-line patterns in two horned lizards (Phrynosoma spp.) mimic plant-stem shadows and stem litter? Journal of Arid Environments, 50, 109–120.CrossRefGoogle Scholar
  68. Sherbrooke, W. C. (2003). Introduction to horned lizards of North America. Berkeley, USA: California University Press.CrossRefGoogle Scholar
  69. Sherbrooke, W. C., & Mason, J. R. (2005). Sensory modality used by coyotes in responding to antipredator compounds in the blood of Texas horned lizards. The Southwestern Naturalist, 50, 216–222.CrossRefGoogle Scholar
  70. Sherbrooke, W. C., & Middendorf, G. A. (2001). Blood-squirting variability in horned lizards (Phrynosoma). Copeia, 2001, 1114–1122.CrossRefGoogle Scholar
  71. Slater, G. J., & Van Valkenburgh, B. (2009). Allometry and performance: The evolution of skull form and function in felids. Journal of Evolutionary Biology, 22, 2278–2287.PubMedCrossRefGoogle Scholar
  72. Smith, R. J. (1999). Statistics of sexual size dimorphism. Journal of Human Evolution, 36, 423–459.PubMedCrossRefGoogle Scholar
  73. Sokal, R. R., & Rohlf, F. J. (1995). Biometry (p. 887). New York: W.H. Freeman and Co.Google Scholar
  74. Stankowich, T., & Blumstein, D. T. (2005). Fear in animals: A meta-analysis and review of risk assessment. Proceedings of the Royal Society of London Series B, 272, 2627–2634.PubMedCrossRefGoogle Scholar
  75. Stankowich, T., & Caro, T. M. (2009). Evolution of weaponry in female bovids. Proceedings of the Royal Society of London Series B, 276, 4329–4334.PubMedCrossRefGoogle Scholar
  76. Sweitzer, R. A., & Berger, J. (1992). Size-related effects of predation on habitat use and behavior of porcupines (Erethizon dorsatum). Ecology, 73, 867–875.CrossRefGoogle Scholar
  77. Thompson, D. A. W. (1945). On growth and form. Cambridge, UK: Cambridge University Press.Google Scholar
  78. Vermeij, G. J. (1982). Unsuccessful predation and evolution. American Naturalist, 120, 701–720.CrossRefGoogle Scholar
  79. Wainwright, P. C., & Turingan, R. G. (1997). Evolution of pufferfish inflation behavior. Evolution, 51, 506 –518.CrossRefGoogle Scholar
  80. Williams, V. S. L., Jones, L. V., & Tukey, J. W. (1999). Controlling error in multiple comparisons, with examples from state-to-state differences in educational achievement. Journal of Educational and Behavioral Statistics, 24, 42–69.Google Scholar
  81. Wilson, L. A. B., & Sánchez-Villagra, M. R. (2010). Diversity trends and their ontogenetic basis: an exploration of allometric disparity in rodents. Proceedings of the Royal Society of London Series B, 277, 1227–1234.PubMedCrossRefGoogle Scholar
  82. Wilson, L. A. B., & Sánchez-Villagra, M. R. (2011). Evolution and phylogenetic signal of growth trajectories: The case of chelid turtles. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 316B, 50–60.CrossRefGoogle Scholar
  83. Young, R. L., & Badyaev, A. V. (2006). Evolutionary persistence of phenotypic integration: Influence of developmental and functional relationships on complex trait evolution. Evolution, 60, 1291–1299.PubMedGoogle Scholar
  84. Young, K. V., Brodie, E. D., Jr., & Brodie, E. D., I. I. I. (2004). How the horned lizard got its horns. Science, 304, 65.PubMedCrossRefGoogle Scholar
  85. Zamudio, K. R. (1998). The evolution of female-biased sexual size dimorphism: A population-level comparative study in horned lizards (Phrynosoma). Evolution, 52, 1821–1833.CrossRefGoogle Scholar
  86. Zelditch, M. L., Swiderski, D. L., Sheets, D. H., & Fink, W. L. (2004). Geometric morphometrics for biologists. Amsterdam, Netherlands: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  2. 2.Department of BiologyClark UniversityWorcesterUSA

Personalised recommendations