Evolutionary Biology

, Volume 39, Issue 1, pp 1–11 | Cite as

Advances in Animal Flight Aerodynamics Through Flow Measurement

Focal Reviews

References

  1. Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23, 261–304.CrossRefGoogle Scholar
  2. Altshuler, D. L., & Dudley, R. (2003). Kinematics of hovering hummingbird flight along simulated and natural elevational gradients. Journal of Experimental Biology, 206(18), 3139.PubMedCrossRefGoogle Scholar
  3. Altshuler, D. L., Princevac, M., Pan, H. S., & Lozano, J. (2009). Wake patterns of the wings and tail of hovering hummingbirds. Experiments in Fluids, 46(5), 835–846.CrossRefGoogle Scholar
  4. Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge: Cambridge University Press.Google Scholar
  5. Birch, J. M., Dickson, W. B., & Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology, 207(7), 1063–1072.PubMedCrossRefGoogle Scholar
  6. Bomphrey, R. J. (2006). Insects in flight: direct visualization and flow measurements. Bioinspiration & Biomimetics, 1(4), S1–S9.CrossRefGoogle Scholar
  7. Bomphrey, R. J., Henningsson, P., Michaelis, D., & Hollis, D. (2011). Desert locust aerodynamics: instantaneous wake volumes captured using tomographic particle image velocimetry. Society for Experimental Biology Annual Main Meeting, Glasgow, UK.Google Scholar
  8. Bomphrey, R. J., Lawson, N. J., Harding, N. J., Taylor, G. K., & Thomas, A. L. R. (2005). The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. Journal of Experimental Biology, 208(6), 1079–1094.PubMedCrossRefGoogle Scholar
  9. Bomphrey, R. J., Lawson, N. J., Taylor, G. K., & Thomas, A. L. R. (2006a). Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth. Experiments in Fluids, 40(4), 546–554.CrossRefGoogle Scholar
  10. Bomphrey, R. J., Taylor, G. K., Lawson, N. J., & Thomas, A. L. R. (2006b). Digital particle image velocimetry measurements of the downwash distribution of a desert locust Schistocerca gregaria. Journal of The Royal Society Interface, 3(7), 311–317.CrossRefGoogle Scholar
  11. Dabiri, J. O. (2005). On the estimation of swimming and flying forces from wake measurements. Journal of Experimental Biology, 208(18), 3519–3532.PubMedCrossRefGoogle Scholar
  12. Dial, K. P. (2000). On the origin and ontogeny of bird flight: developing wings assist vertical running. American Zoologist, 40(6), 998.Google Scholar
  13. Dial, K. P., Biewener, A. A., Tobalske, B. W., & Warrick, D. R. (1997). Mechanical power output of bird flight. Nature, 390(6655), 67–70.CrossRefGoogle Scholar
  14. Drucker, E. G., & Lauder, G. V. (1999). Locomotor forces on a swimming fish: Three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. Journal of Experimental Biology, 202(18), 2393–2412.PubMedGoogle Scholar
  15. Ellington, C. P., van den Berg, C., Willmott, A. P., & Thomas, A. L. R. (1996). Leading-edge vortices in insect flight. Nature, 384(6610), 626–630.CrossRefGoogle Scholar
  16. Ferry-Graham, L. A., Wainwright, P. C., & Lauder, G. V. (2003). Quantification of flow during suction feeding in bluegill sunfish. Zoology, 106(2), 159–168.PubMedCrossRefGoogle Scholar
  17. Flammang, B. E., Lauder, G. V., Troolin, D. R., Strand, T. E. (2011). Volumetric imaging of fish locomotion. Biology Letters. Google Scholar
  18. Garner, J. P., Taylor, G. K., & Thomas, A. L. R. (1999). On the origins of birds: the sequence of character acquisition in the evolution of avian flight. Proceedings of the Royal Society of London Series B-Biological Sciences, 266(1425), 1259–1266.CrossRefGoogle Scholar
  19. Hedenström, A., Johansson, L. C., & Spedding, G. (2009a). Bird or bat: comparing airframe design and flight performance. Bioinspiration & Biomimetics, 4(1), 015001.CrossRefGoogle Scholar
  20. Hedenström, A., Johansson, L. C., Wolf, M., von Busse, R., Winter, Y., & Spedding, G. R. (2007). Bat flight generates complex aerodynamic tracks. Science, 316(5826), 894–897.PubMedCrossRefGoogle Scholar
  21. Hedenström, A., Muijres, F., von Busse, R., Johansson, L., Winter, Y., Spedding, G. (2009). High-speed stereo DPIV measurement of wakes of two bat species flying freely in a wind tunnel. Experiments in Fluids.Google Scholar
  22. Hedenström, A., Rosen, M., & Spedding, G. R. (2006a). Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel. Journal of The Royal Society Interface, 3(7), 263–276.CrossRefGoogle Scholar
  23. Hedenström, A., Van Griethuijsen, L., Rosen, M., & Spedding, G. R. (2006b). Vortex wakes of birds: recent developments using digital particle image velocimetry in a wind tunnel. Animal Biology, 56(4), 535–549.CrossRefGoogle Scholar
  24. Heers, A. M., Tobalske, B. W., & Dial, K. P. (2011). Ontogeny of lift and drag production in ground birds. Journal of Experimental Biology, 214(5), 717–725.PubMedCrossRefGoogle Scholar
  25. Henningsson, P., & Bomphrey, R. J. (2011). A view of dragonfly and damselfly aerodynamics through high-speed stereo PIV. Integrative and Comparative Biology, 51, E56.Google Scholar
  26. Henningsson, P., Muijres, F. T., & Hedenström, A. (2011a). Time-resolved vortex wake of a common swift flying over a range of flight speeds. Journal of The Royal Society Interface, 8(59), 807–816.CrossRefGoogle Scholar
  27. Henningsson, P., Spedding, G. R., & Hedenström, A. (2011b). Vortex wake, flight kinematics of a swift in cruising flight in a wind tunnel (vol 211, pg 717, 2008). Journal of Experimental Biology, 214(4), 697.CrossRefGoogle Scholar
  28. Huang, H., et al. (1997). On errors of digital particle image velocimetry. Measurement Science and Technology, 8(12), 1427.CrossRefGoogle Scholar
  29. Hubel, T., Hristov, N., Swartz, S., Breuer, K. (2009). Time-resolved wake structure and kinematics of bat flight. Experiments in Fluids. Google Scholar
  30. Hubel, T. Y., Hristov, N. I., Swartz, S. M., & Breuer, K. S. (2009b). Time-resolved wake structure and kinematics of bat flight. Experiments in Fluids, 46(5), 933–943.CrossRefGoogle Scholar
  31. Hubel, T. Y., Riskin, D. K., Swartz, S. M., & Breuer, K. S. (2010). Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis. Journal of Experimental Biology, 213(20), 3427–3440.PubMedCrossRefGoogle Scholar
  32. Hubel, T. Y., & Tropea, C. (2010). The importance of leading edge vortices under simplified flapping flight conditions at the size scale of birds. Journal of Experimental Biology, 213(11), 1930–1939.PubMedCrossRefGoogle Scholar
  33. Johansson, L. C., & Hedenström, A. (2009). The vortex wake of blackcaps (Sylvia atricapilla L) measured using high-speed digital particle image velocimetry (DPIV). Journal of Experimental Biology, 212(20), 3365–3376.PubMedCrossRefGoogle Scholar
  34. Johansson, L. C., Wolf, M., & Hedenström, A. (2010). A quantitative comparison of bird and bat wakes. Journal of The Royal Society Interface, 7(42), 61–66.CrossRefGoogle Scholar
  35. Johansson, L. C., Wolf, M., von Busse, R., Winter, Y., Spedding, G. R., & Hedenström, A. (2008). The near and far wake of Pallas’ long tongued bat (Glossophaga soricina). Journal of Experimental Biology, 211(18), 2909–2918.PubMedCrossRefGoogle Scholar
  36. Kelvin, L. (1887). On ship waves. Proceedings the Institution of Mechanical Engineers, 38, 409–434.CrossRefGoogle Scholar
  37. Kunz, T. H., & Jones, D. P. (2000). Pteropus vampyrus. Mammalian Species, 642, 1–6.CrossRefGoogle Scholar
  38. Lack, D. (1956). Swifts in a tower. London: Methuen.Google Scholar
  39. Lehmann, F. O. (2004). Aerial locomotion in flies and robots: kinematic control and aerodynamics of oscillating wings. Arthropod Structure & Development, 33(3), 331–345.CrossRefGoogle Scholar
  40. Lehmann, F. O. (2008). When wings touch wakes: understanding locomotor force control by wake-wing interference in insect wings. Journal of Experimental Biology, 211(2), 224–233.PubMedCrossRefGoogle Scholar
  41. Lewin, R. (1983). How did vertebrates take to the air?Google Scholar
  42. Liao, J. C., Beal, D. N., Lauder, G. V., & Triantafyllou, M. S. (2003). Fish exploiting vortices decrease muscle activity. Science, 302(5650), 1566–1569.PubMedCrossRefGoogle Scholar
  43. Muijres, F. T., Bowlin, M. S., Johansson, L. C., Hedenström, A. (2011). Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers. Journal of The Royal Society Interface. Google Scholar
  44. Muijres, F. T., Johansson, L. C., Barfield, R., Wolf, M., Spedding, G. R., & Hedenström, A. (2008). Leading-edge vortex improves lift in slow-flying bats. Science, 319(5867), 1250–1253.PubMedCrossRefGoogle Scholar
  45. Muijres, F. T., Johansson, L. C., Winter, Y., Hedenström, A. (2011). Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization. Journal of The Royal Society Interface.Google Scholar
  46. Olberg, R. M., Worthington, A. H., & Venator, K. R. (2000). Prey pursuit and interception in dragonflies. Journal of Comparative Physiology A, 186, 155–162.CrossRefGoogle Scholar
  47. Pennycuick, C. J. (1968). Power requirements for horizontal flight in the pigeon Columba livia. Journal of Experimental Biology, 49, 527–555.Google Scholar
  48. Rosen, M., Spedding, G. R., & Hedenström, A. (2007). Wake structure and wingbeat kinematics of a house-martin Delichon urbica. Journal of The Royal Society Interface, 4(15), 659–668.CrossRefGoogle Scholar
  49. Spedding, G. R. (1987). The wake of a kestrel (Falco tinnunculus) in flapping flight. Journal of Experimental Biology, 127, 59–78.Google Scholar
  50. Spedding, G. R. (2003). Comparing fluid mechanics models with experimental data. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 358(1437), 1567–1576.CrossRefGoogle Scholar
  51. Spedding, G. R., & Hedenström, A. (2009). PIV-based investigations of animal flight. Experiments in Fluids, 46(5), 749–763.CrossRefGoogle Scholar
  52. Spedding, G. R., Hedenström, A., & Rosen, M. (2003a). Quantitative studies of the wakes of freely flying birds in a low-turbulence wind tunnel. Experiments in Fluids, 34(2), 291–303.CrossRefGoogle Scholar
  53. Spedding, G. R., Rayner, J. M. V., & Pennycuick, C. J. (1984). Momentum and energy in the wake of a pigeon (Columba-Livia) in slow flight. Journal of Experimental Biology, 111, 81–102.Google Scholar
  54. Spedding, G. R., Rosen, M., & Hedenström, A. (2003b). A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. Journal of Experimental Biology, 206(14), 2313–2344.PubMedCrossRefGoogle Scholar
  55. Stamhuis, E. J., & Videler, J. J. (1995). Quantitative flow analysis around aquatic animals using laser sheet Particle Image Velocimetry. Journal of Experimental Biology, 198(2), 283–294.PubMedGoogle Scholar
  56. Stanislas, M., Okamoto, K., Kaehler, C. J., Westerweel, J., & Scarano, F. (2008). Main results of the third international PIV Challenge. Experiments in Fluids, 45(1), 27–71.CrossRefGoogle Scholar
  57. Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L., & Bomphrey, R. J. (2004). Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology, 207(24), 4299–4323.PubMedCrossRefGoogle Scholar
  58. Tian, X. D., Iriarte-Diaz, J., Middleton, K., Galvao, R., Israeli, E., Roemer, A., et al. (2006). Direct measurements of the kinematics and dynamics of bat flight. Bioinspiration & Biomimetics, 1(4), S10–S18.CrossRefGoogle Scholar
  59. Tobalske, B. W., & Dial, K. P. (2007). Aerodynamics of wing-assisted incline running in birds. Journal of Experimental Biology, 210(10), 1742–1751.PubMedCrossRefGoogle Scholar
  60. Usherwood, J. R., & Ellington, C. P. (2002). The aerodynamics of revolving wings—I. Model hawkmoth wings. Journal of Experimental Biology, 205(11), 1547–1564.PubMedGoogle Scholar
  61. Vandenberghe, N., Zhang, J., & Childress, S. (2004). Symmetry breaking leads to forward flapping flight. Journal of Fluid Mechanics, 506, 147–155.CrossRefGoogle Scholar
  62. Videler, J. J., Stamhuis, E. J., & Povel, G. D. E. (2004). Leading-edge vortex lifts swifts. Science, 306(5703), 1960–1962.PubMedCrossRefGoogle Scholar
  63. Warrick, D. R., Tobalske, B. W., & Powers, D. R. (2005). Aerodynamics of the hovering hummingbird. Nature, 435(7045), 1094–1097.PubMedCrossRefGoogle Scholar
  64. Warrick, D. R., Tobalske, B. W., & Powers, D. R. (2009). Lift production in the hovering hummingbird. Proceedings of the Royal Society B-Biological Sciences, 276(1674), 3747–3752.CrossRefGoogle Scholar
  65. Windsor, S. P., Norris, S. E., Cameron, S. M., Mallinson, G. D., & Montgomery, J. C. (2010). The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus) Part I: open water and heading towards a wall. Journal of Experimental Biology, 213(22), 3819–3831.PubMedCrossRefGoogle Scholar
  66. Winston, M. L. (1987). The biology of the honey bee (p. XI+281). Cambridge, Massachusetts, USA; London, England, UK: Harvard University Press.Google Scholar
  67. Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K., & Thomas, A. L. R. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325(5947), 1549–1552.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of OxfordOxfordUK

Personalised recommendations