Evolutionary Biology

, Volume 38, Issue 4, pp 412–421 | Cite as

Convergent Patterns of Body Shape Differentiation in Four Different Clades of Poeciliid Fishes Inhabiting Sulfide Springs

  • Michael Tobler
  • Logan Hastings
Research Article


We investigated replicated differentiation in four lineages of livebearing fishes (two with the genus Poecilia and two within Gambusia), which inhabit freshwater habitats and have also colonized sulfide springs in Oklahoma, Mexico, and Venezuela. Sulfide springs are characterized by extreme hypoxia and high concentrations of toxic hydrogen sulfide, which provide a strong source of divergent selection compared to adjacent non-sulfidic habitats. Using geometric morphometric analysis of body shape, we found that sulfide spring populations significantly differ from relatives from regular freshwater habitats in all four lineages investigated. Differentiation is characterized by strong patterns of convergent evolution, with sulfide spring populations consistently exhibiting an increase in head size, even though the magnitude and nature differences varied across lineages. Head size is strongly correlated with an increase in gill size in sulfide spring populations of the genus Poecilia, which facilitates efficient oxygen acquisition in the hypoxic H2S-environment and directly affects survival. The convergent patterns of differentiation support previous findings about the effects of sulfide on trait evolution.


Adaptation Convergent evolution Divergent selection Gambusia Hydrogen sulfide Poecilia 



We thank N. Franssen and C. Tobler for help in the field and D. Hendrickson for help with specimen loans. We are indebted to K. Winemiller for continuous support and for sharing information about sites in Venezuela. N. Franssen, M. Plath, R. Riesch, and C. Tobler kindly provided comments on an earlier version of the manuscript. The Mexican government (CONAPESCA: DGOPA/16986/191205/8101, DGOPA/02232/230706/1079, DGOPA.06192.240608-1562, DGOPA.00093.120110.-0018, and SGPA/DGVS/04751/08) and the United States National Park Service Chickasaw NRA (CHIC-2007-SCI-0001) kindly provided collection permits. Financial support came from the National Geographic Society.


  1. Arendt, J., & Reznick, D. (2008). Convergence and parallelism reconsidered: What have we learned about the genetics of adaptation? Trends in Ecology & Evolution, 23, 26–32.CrossRefGoogle Scholar
  2. Beatty, J. (2010). Reconsidering the importance of chance variation. In M. Pigliucci & G. B. Müller (Eds.), Evolution: The extended synthesis (pp. 21–44). Cambridge, MS: MIT Press.Google Scholar
  3. Blount, Z. D., Borland, C. Z., & Lenski, R. E. (2008). Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proceedings of the National Academy of Sciences USA, 105(23), 7899–7906.CrossRefGoogle Scholar
  4. Breden, F., Ptacek, M. B., Rashed, M., Taphorn, D., & Figueiredo, C. A. (1999). Molecular phylogeny of the live-bearing fish genus Poecilia (Cyprinodontiformes: Poeciliidae). Molecular Phylogenetics and Evolution, 12(2), 95–104.PubMedCrossRefGoogle Scholar
  5. Chen, K., & Morris, J. (1972). Kinetics of oxidation of aqueous sulfide by O2. Enviromental Science and Technology, 6, 529–537.CrossRefGoogle Scholar
  6. Cline, J., & Richards, F. (1969). Oxygenation of hydrogen sulfide in seawater at constant salinity, temerature, and pH. Enviromental Science and Technology, 3, 838–843.CrossRefGoogle Scholar
  7. Covich, A. (1981). Chemical refugia from predation for thin-shelled gastropods in a sulfide-enriched stream. Verhandlungen der Internationalen Vereinigung fuer Limnologie, 21, 1632–1636.Google Scholar
  8. Endler, J. A. (1986). Natural selection in the wild. Princeton, NJ: Princeton University Press.Google Scholar
  9. Fontanier, M. E., & Tobler, M. (2009). A morphological gradient revisited: Cave mollies vary not only in eye size. Environmental Biology of Fishes, 86(2), 285–292.CrossRefGoogle Scholar
  10. Hildebrandt, T. M., & Grieshaber, M. (2008). Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS Journal, 275, 3352–3361.PubMedCrossRefGoogle Scholar
  11. Hoekstra, H., Hirschmann, R. J., Bundey, R. A., Insel, P. A., & Crossland, J. P. (2006). A single amino acid mutation contributes to adaptive beach mouse color pattern. Science, 313, 101–104.PubMedCrossRefGoogle Scholar
  12. Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., & Cresko, W. A. (2010). Population genomics of parallel adaptation in threespined stickleback using sequenced RAD tags. PLoS Genetics, 6(2), e1000862.PubMedCrossRefGoogle Scholar
  13. Hrbek, T., Seckinger, J., & Meyer, A. (2007). A phylogenetic and biogeographic perspective on the evolution of poeciliid fishes. Molecular Phylogenetics and Evolution, 43, 986–998.PubMedCrossRefGoogle Scholar
  14. Hulsey, C. D., Roberts, R. J., Lin, A. S. P., Guldberg, R., & Streelman, J. T. (2008). Convergence in a mechanically complex phenotype: Detecting structural adaptations for crushing in cichlid fish. Evolution, 62(7), 1587–1599.PubMedCrossRefGoogle Scholar
  15. Lagoutte, E., Mimoun, S., Andriamihaja, M., Chaumontet, C., Blachier, F., & Bouillaud, F. (2010). Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochimica Et Biophysica Acta, 1797, 1500–1511.PubMedCrossRefGoogle Scholar
  16. Langerhans, R. B. (2009). Trade-off between steady and unsteady swimming underlies predator-driven divergence in Gambusia affinis. Journal of Evolutionary Biology, 22(5), 1057–1075.PubMedCrossRefGoogle Scholar
  17. Langerhans, R. B., Chapman, L. J., & DeWitt, T. J. (2007a). Complex phenotype-environment associations revealed in an East African cyprinid. Journal of Evolutionary Biology, 20(3), 1171–1181.PubMedCrossRefGoogle Scholar
  18. Langerhans, R. B., & DeWitt, T. J. (2004). Shared and unique features of evolutionary diversification. American Naturalist, 164(3), 335–349.PubMedCrossRefGoogle Scholar
  19. Langerhans, R. B., Gifford, M., & Joseph, E. (2007b). Ecological speciation in Gambusia fishes. Evolution, 61(9), 2056–2074.PubMedCrossRefGoogle Scholar
  20. Losos, J. B. (1990). The evolution of form and function: Morphology and locomotor performance in West Indian Anolis lizards. Evolution, 44, 1189–1203.CrossRefGoogle Scholar
  21. Lovatt Evans, C. (1967). The toxicity of hydrogen sulphide and other sulphides. Quarterly Journal of Experimental Physiology, 52, 231–248.Google Scholar
  22. Lozano-Vilano, M., & Contreras-Balderas, S. (1999). Cyprinodon bobmilleri: New species of Pubfish from Nuevo Leon, Mexico (Pisces: Cyprinodontidae). Copeia, 1999(2), 382–387.CrossRefGoogle Scholar
  23. Lydeard, C., Wootton, M. C., & Meyer, A. (1995). Molecules, morphology, and area cladograms: A cladistic and biogeographic analysis of Gambusia (Teleostei: Poeciliidae). Systematic Biology, 44(2), 221–236.Google Scholar
  24. Magurran, A. E. (2005). Evolutionary ecology: The Trinidadian guppy. Oxford: Oxford University Press.CrossRefGoogle Scholar
  25. Manceau, M., Domingues, V. S., Linnen, C. R., Rosenblum, E. B., & Hoekstra, H. (2010). Convergence in pigmentation at multiple levels: Mutation, genes, and function. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 2439–2450.CrossRefGoogle Scholar
  26. Mani, G. S., & Clarke, B. C. (1990). Mutational order: A major stochastic process in evolution. Proceedings of the Royal Society B: Biological Sciences, 240(1297), 29–37.CrossRefGoogle Scholar
  27. Marcia, M., Ermler, U., Peng, G., & Michel, H. (2009). The structure of Aquifex aeolicus sulfide: Quinone oxidoreductatse, a basis to understand sulfide detoxification and respiration. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9625–9630.PubMedCrossRefGoogle Scholar
  28. Melville, J., Harmon, L. J., & Losos, J. B. (2006). Intercontinental community convergence of ecology and morphology in desert lizards. Proceedings of the Royal Society B: Biological Sciences, 273, 557–563.PubMedCrossRefGoogle Scholar
  29. Miller, R., & Robison, H. (2004). Fishes of Oklahoma. Norman: University of Oklahoma Press.Google Scholar
  30. Miller, R. R. (1975). Five new species of Mexican poeciliid fishes of the genera Poecilia, Gambusia, and Poeciliopsis. Occasional Papers of the Museum of Zoology, University of Michigan, 672, 1–44.Google Scholar
  31. Miller, R. R., Minckley, W., & Norris, S. (2005). Freshwater fishes of Mexico. Chicago: University of Chicago Press.Google Scholar
  32. National Research Council. (1979). Hydrogen sulfide. Baltimore: University Park Press.Google Scholar
  33. Peters, N., Peters, G., Parzefall, J., & Wilkens, H. (1973). Über degenerative und konstruktive Merkmale bei einer phylogenetisch jungen Höhlenform von Poecilia sphenops (Pisces, Poeciliidae). Internationale Revue der Gesamten Hydrobiologie, 58, 417–436.CrossRefGoogle Scholar
  34. Petersen, L. (1977). The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochimica Et Biophysica Acta, 460, 299–307.PubMedCrossRefGoogle Scholar
  35. Plath, M., Hauswaldt, S., Moll, K., Tobler, M., Garcia de Leon, F., Schlupp, I., et al. (2007a). Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulfide. Molecular Ecology, 16, 967–976.PubMedCrossRefGoogle Scholar
  36. Plath, M., Hermann, C., Schröder, R., Riesch, R., Tobler, M., Garcia de Leon, F. J., et al. (2010a). Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event. BMC Evolutionary Biology, 10, 256.PubMedCrossRefGoogle Scholar
  37. Plath, M., Riesch, R., Oranth, A., Dzienko, J., Karau, N., Schiessl, A., et al. (2010b). Complementary effects of natural and sexual selection against immigrants maintains differentiation between locally adapted fish. Naturwissenschaften, 97, 769–774.PubMedCrossRefGoogle Scholar
  38. Plath, M., & Schlupp, I. (2008). Parallel evolution leads to reduced shoaling behavior in two cave dwelling populations of Atlantic mollies (Poecilia mexicana, Poeciliidae, Teleostei). Environmental Biology of Fishes, 82(3), 289–297.CrossRefGoogle Scholar
  39. Plath, M., Tobler, M., Riesch, R., Garcia de Leon, F. J., Giere, O., & Schlupp, I. (2007b). Survival in an extreme habitat: The role of behaviour and energy limitation. Naturwissenschaften, 94, 991–996.PubMedCrossRefGoogle Scholar
  40. Porter, M., & Crandall, K. (2003). Lost along the way: The significance of evolution in reverse. Trends in Ecology & Evolution, 18, 541–547.CrossRefGoogle Scholar
  41. Price, T., Lovette, I. J., Bermingham, E., Gibbs, H. L., & Richman, A. D. (2000). The imprint of history on North American and Asian warblers. American Naturalist, 156(4), 354–367.CrossRefGoogle Scholar
  42. Protas, M. E., Hersey, C., Kochanek, D., Zhou, Y., Wilkens, H., Jeffery, W. R., et al. (2006). Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genetics, 38(1), 107–111.PubMedCrossRefGoogle Scholar
  43. Ptacek, M. B., & Breden, F. (1998). Phylogenetic relationships among the mollies (Poeciliidae: Poecilia: Mollienesia group) based on mitochondrial DNA sequences. Journal of Fish Biology, 53(Supplement A), 64–81.CrossRefGoogle Scholar
  44. Reiffenstein, R., Hulbert, W., & Roth, S. (1992). Toxicology of hydrogen sulfide. Annual Reviews of Pharmacology and Toxicology, 1992, 109–134.CrossRefGoogle Scholar
  45. Reis, R. E., Kullander, S. O., & Ferraris, C. J. (Eds.). (2003). The check list of the freshwater fishes of South and Central America. Porto Alegre: Edipucrs.Google Scholar
  46. Ricklefs, R. E., & Schluter, D. (1993). Species diversity: Regional and historical influences. In R. E. Ricklefs & D. Schluter (Eds.), Species diversity in ecological communities (pp. 350–363). Chicago, IL: University of Chicago Press.Google Scholar
  47. Riesch, R., Plath, M., Garcia de Leon, F. J., & Schlupp, I. (2010a). Convergent life-history shifts: Toxic environments result in big babies in two clades of poeciliids. Naturwissenschaften, 97(2), 133–141.PubMedCrossRefGoogle Scholar
  48. Riesch, R., Plath, M., & Schlupp, I. (2010b). Toxic hydrogen sulfide and dark caves: Life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae). Ecology, 91(5), 1494–1505.PubMedCrossRefGoogle Scholar
  49. Rivas, L. R. (1980). Eight new species of poeciliid fishes of the genus Limia from Hispaniola. Northeast Gulf Science, 2(2), 98–112.Google Scholar
  50. Rohlf, F. (2004). tpsDig. Available from
  51. Rohlf, F. (2005). tpsRegr. Available from
  52. Rohlf, F. (2007). tpsRelw. Available from
  53. Rosen, D., & Bailey, R. (1963). The poeciliid fishes (Cyprinodontiformes), their structure, zoogeography and systematics. Bulletin of the American Museum of Natural History, 126, 1–176.Google Scholar
  54. Schluter, D., & McPhail, J. (1992). Ecological character displacement and speciation in sticklebacks. American Naturalist, 140(1), 85–108.PubMedCrossRefGoogle Scholar
  55. Shahak, Y., & Hauska, G. (2008). Sulfide oxidation from cyanobacteria to humans: Sulfide-quinone oxidoreductase (SQR). In R. Hell, C. Dahl, & T. L. Knaff DB (Eds.), Advances in photosynthesis and respiration (pp. 319–335). Heidelberg: Springer.Google Scholar
  56. Shapiro, M. D., Bell, M. A., & Kingsley, D. M. (2006). Parallel genetic origins of pelvic reduction in vertebrates. Proceedings of the National Academy of Sciences USA, 103(7), 13753–13758.CrossRefGoogle Scholar
  57. Taylor, E. B., & McPhail, J. (1999). Evolutionary history of an adaptive radiation in species pairs of threespine sticklebacks (Gasterosteus): Insights from mitochondrial DNA. Biological Journal of the Linnean Society, 66, 271–291.CrossRefGoogle Scholar
  58. Theissen, U., Hoffmeister, M., Grieshaber, M., & Martin, W. (2003). Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Molecular Biology and Evolution, 20, 1564–1574.PubMedCrossRefGoogle Scholar
  59. Tobler, M., DeWitt, T. J., Schlupp, I., Garcia de Leon, F. J., Herrmann, R., Feulner, P., et al. (2008a). Toxic hydrogen sulfide and dark caves: Phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution, 62(10), 2643–2649.PubMedCrossRefGoogle Scholar
  60. Tobler, M., Palacios, M., Chapman, L. J., Mitrofanov, I., Bierbach, D., Plath, M., Arias-Rodriguez, L., Garcia de Leon, F. J., Mateos, M. (2011). Evolution in extreme environments: replicated phenotypic differentiation in livebearing fish inhabiting sulfidic springs. Evolution online first:doi:  10.1111/j.1558-5646.2011.01298.x.
  61. Tobler, M., & Plath, M. (2009a). Threatened fishes of the world: Gambusia eurystoma Miller, 1975 (Poeciliidae). Environmental Biology of Fishes, 85, 251.CrossRefGoogle Scholar
  62. Tobler, M., & Plath, M. (2009b). Threatened fishes of the world: Poecilia sulphuraria (Alvarez, 1948) (Poeciliidae). Environmental Biology of Fishes, 85, 333–334.CrossRefGoogle Scholar
  63. Tobler, M., & Plath, M. (2011). Living in extreme habitats. In J. Evans, A. Pilastro, & I. Schlupp (Eds.), Ecology and evolution of poeciliid fishes (pp. 120–127). Chicago: University of Chicago Press.Google Scholar
  64. Tobler, M., Riesch, R., Garcia de Leon, F. J., Schlupp, I., & Plath, M. (2008b). Two endemic and endangered fishes, Poecilia sulphuraria (Alvarez, 1948) and Gambusia eurystoma Miller, 1975 (Poeciliidae, Teleostei), as only survivors in a small sulfidic habitat. Journal of Fish Biology, 72(3), 523–533.CrossRefGoogle Scholar
  65. Tobler, M., Riesch, R., Tobler, C. M., & Plath, M. (2009a). Compensatory behaviour in response to sulfide-induced hypoxia affects time budgets, feeding efficiency, and predation risk. Evolutionary Ecology Research, 11, 935–948.Google Scholar
  66. Tobler, M., Riesch, R., Tobler, C. M., Schulz-Mirbach, T., & Plath, M. (2009b). Natural and sexual selection against immigrants maintains differentiation among micro-allopatric populations. Journal of Evolutionary Biology, 22(11), 2298–2304.PubMedCrossRefGoogle Scholar
  67. Wilkens, H., & Strecker, U. (2003). Convergent evolution of the cavefish Astyanax (Characidae, Teleostei): Genetic evidence from reduced eye-size and pigmentation. Biological Journal of the Linnean Society, 80(4), 545–554.CrossRefGoogle Scholar
  68. Winemiller, K. O., Leslie, M., & Roche, R. (1990). Phenotypic variation in male guppies from natural inland populations: An additional test of Haskins’ sexual selection/predation hypthesis. Environmental Biology of Fishes, 29, 173–191.CrossRefGoogle Scholar
  69. Wood, T. E., Burke, J. M., & Rieseberg, L. H. (2005). Parallel genotypic adaptation: When evolution repeats itself. Genetica, 123, 157–170.PubMedCrossRefGoogle Scholar
  70. Young, K. A., Snoeks, J., & Seehausen, O. (2009). Morphological diversity and the roles of contingency, chance and determinism in African cichlid radiations. PLoS ONE, 4(3), e4740.PubMedCrossRefGoogle Scholar
  71. Zelditch, M., Swiderski, D., Sheets, H., & Fink, W. (2004). Geometric morphometrics for biologists. Amsterdam: Elsevier Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ZoologyOklahoma State UniversityStillwaterUSA
  2. 2.South Texas College of LawHoustonUSA

Personalised recommendations