Skip to main content

Advertisement

Log in

How Accurate are Paleoecological Reconstructions of Early Paleontological and Archaeological Sites?

  • Tools and Techniques
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

An Erratum to this article was published on 24 August 2010

Abstract

Paleoecology allows construction of paleoenvironmental models, faunal changes and evolutionary trends of paleontological taxa using modern analogs. However, when linking modern analogs to paleontological taxa in paleoecological reconstruction, differential taxonomic preservation in the fossil record has to be taken into account. Paleontologists have known the biased nature of the fossil record since Efremov’s publication on taphonomy in 1940, yet many ecological models of habitats associated with hominins in paleontological and archaeological sites in Africa and elsewhere barely address the complexity of the fossil record. We use randomly sampled ungulates from modern biomes in a comparative taxonomic abundance to demonstrate how the combination of modern thanatocoenoses and taphocoenoses, when used in reference to habitat-specific biocoenosis, produce better inferences of past habitats in paleontological and archaeological sites than approaches currently used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Some bovid counts, for instance, are carried out using only horn cores, thus biasing some bovid groups where females, more abundantly represented in alluvial environments for certain species, are not properly counted. Furthermore, the trend of collecting just teeth and horn cores decreases the actual counts since individuals often appear represented in the landscape by postcrania. Postcrania can be useful for differentiating some bovid tribes, as well as determinant to taphonomic reconstruction of post-depositional processes.

References

  • Andrews, P. (1995). Experiments in taphonomy. Journal of Archaeological Science, 22, 147–153.

    Article  Google Scholar 

  • Andrews, P. (2006). Taphonomic effects of faunal impoverishment and faunal mixing. Paleogeography, Palaeoclimatology, and Paleoecology, 241, 572–589.

    Article  Google Scholar 

  • Behrensmeyer, A. K., & Kidwell, S. M. (1985). Taphonomy’s contributions to paleobiology. Paleobiology, 11(1), 105–119.

    Google Scholar 

  • Behrensmeyer, A. K., Western, D., & Dechant Boaz, E. (1979). New perspectives in vertebrate paleoecology from a recent bone assemblage. Paleobiology, 5, 12–21.

    Google Scholar 

  • Blumenschine, R. J. (1986). Early hominid scavenging opportunities. Implications of carcass availability in the serengeti and ngorongoro ecosystems (p. 283). Oxford: B.A.R. International Series.

    Google Scholar 

  • Bobe, R., Behrensmeyer, A. K., & Chapman, R. (2002). Faunal change, environmental variability and Late Pliocene hominin evolution. Journal of Human Evolution, 42(4), 475–497.

    Article  PubMed  Google Scholar 

  • Bobe, R., Behrensmeyer, A. K., Eck, G. G., & Harris, J. M. (2007). Patterns of abundance and diversity in Late Cenozoic bovids from the Turkana and Hadar basins, Kenya and Ethiopia. In R. Bobe, Z. Alemseged, & A. K. Behrensmeyer (Eds.), Hominin environments in the East African pliocene: An assessment of the faunal evidence (pp. 129–157). Dodrecht: Springer.

    Chapter  Google Scholar 

  • Bunge, M. (1998). Philosophy of science. Londres: Transaction Publishers.

    Google Scholar 

  • Cerling, T. E., Harris, M. J., & Passey, B. H. (2003). Diets of East African Bovidae based on stable isotope analysis. Journal of Mammalogy, 84(2), 444–455.

    Article  Google Scholar 

  • Cleghorn, N., & Marean, C. W. (2007). The destruction of skeletal elements by carnivores: The growth of general model for skeletal element destruction and survival in zooarchaeological assemblages. In T. R. Pickering, N. Toth, & K. Schick (Eds.), Breathing life into fossils: Taphonomic studies in honor of C.K. (Bob) Brain (pp. 37–66). Gosport, Indiana: Stone Age Institute Press.

    Google Scholar 

  • Cordon, D., Cordon, J., Lee-Thorp, J. A., Sponheimer, M., Sealy, J., Grant, R., et al. (2007). Diets of savanna ungulates from stable carbon isotope composition of faeces. Journal of Zoology, 273, 21–29.

    Article  Google Scholar 

  • Cutler, A. H., Behrensmeyer, A. K., & Chapman, R. E. (1999). Environmental information in a recent bone assemblage: Roles of taphonomic processes and ecological change. In: R. Martin, S. Goldstein, & R. T. Patterson (Eds.), Fossil taphonomy: Paleoenvironmental reconstruction and environmental assessment. Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 359–372.

  • Darwin, C. (1859). The origin of species. London: Murray.

  • Denys, C. (2002). Taphonomy and experimentation. Archaeometry, 44(3), 469–484.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M. (1996). A landscape study of bone preservation in the Galana & Kulalu (Kenya) ecosystems. Origini, 20, 17–38.

    Google Scholar 

  • Domínguez-Rodrigo, M. (2008). Conceptual premises in experimental design and their bearing on the use of analogy: An example from experiments on cut marks. World Archaeology, 40, 7–82.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., Barba, R., & Egeland, C. P. (2007). Deconstructing Olduvai. New York: Springer.

    Book  Google Scholar 

  • Domínguez-Rodrigo, M., Bunn, H. T., Mabulla, A., Ashley, G. M., Diez-Martín, F., Prendergast, M. E., et al. (2010). The behavioral meaning of FLK Zinj: New excavations at the site and its surrounding landscape. Quaternary Research (in press).

  • Dublin, H. T. (1995). Vegetation dynamics in the Serengeti-Mara ecosystem: The role of elephants, fire and other factors. In A. R. E. Sinclair & P. Arcese (Eds.), Serengeti II. Dynamics, management, and conservation of an ecosystem (pp. 71–90). Chicago: The University of Chicago Press.

    Google Scholar 

  • Efremov, I. A. (1940). Taphonomy: A new branch of palaeontology. Pan American Geologist, 74, 81–93.

    Google Scholar 

  • Egeland, C. P. (2007). Zooarchaeological and taphonomic perspectives on hominid and carnivore interactions at Olduvai Gorge, Tanzania. Ph.D. Dissertation, Indiana University, Bloomington.

  • Egeland, C. P., & Domínguez-Rodrigo, M. (2008). Taphonomic perspectives on hominid site use and foraging strategies during Bed II times at Olduvai Gorge, Tanzania. Journal of Human Evolution, 55(6), 1031–1052.

    Article  PubMed  Google Scholar 

  • Eltringham, S. K., & Din, A. N. (1977). Estimates of the population size of some ungulate species in the Rwenzori National Park, Uganda. East African Wildlife Journal, 15, 305–316.

    Google Scholar 

  • Eltringham, S. K., & Woodford, H. (1973). The numbers and distribution of buffalo in the Rwenzori National Park, Uganda. East African Wildlife Journal, 11, 51–164.

    Google Scholar 

  • Fernández-López, S. (2006). Taphonomic alteration and evolutionary taphonomy. Journal of Taphonomy, 4(3), 111–142.

    Google Scholar 

  • Harris, J. M. (1983). Koobi Fora Research Project (Vol. 2). The Fossil Ungulates: Proboscidea, perissodactyla and suidae. Oxford: Clarendon Press.

    Google Scholar 

  • Jarman, P. J., & Sinclair, A. R. E. (1979). Feeding strategy and the pattern of resource partitioning in ungulates. In A. R. E. Sinclair & M. Norton-Griffiths (Eds.), Serengeti (pp. 130–163). Chicago: The University of Chicago Press.

    Google Scholar 

  • Kenyi, J. M. (1979). Bone collection from Rwenzori National Park, Uganda. African Journal of Ecology, 17, 123–125.

    Google Scholar 

  • Klein, R. G. (1984). Mammalian extinctions and Stone Age people in Africa. In P. S. Martin & R. G. Klein (Eds.), Quaternary extinctions: A prehistoric revolution (pp. 553–573). Tucson: University of Arizona Press.

    Google Scholar 

  • Klein, R. G. (1994). The long-horned African buffalo (Pelorovis antiquus) is an extinct species. Journal of Archaeological Science, 21, 725–733.

    Article  Google Scholar 

  • Lam, Y. M., & Pearson, O. M. (2005). Bone density studies and the interpretation of the faunal record. Evolutionary Anthropology, 14, 99–108.

    Article  Google Scholar 

  • Lamprey, H. F. (1962). A study of the ecology of the mammal population of a game reserve in the Acacia savanna of Tanganyika, with particular reference to animal numbers and biomass. Ph.D. Dissertation, Department of Zoology, Oxford University.

  • Lamprey, H. F. (1963). Ecological separation of the large mammal species in the Tarangire game reserve, Tanganyika. East African Wildlife Journal, 1, 63–92.

    Google Scholar 

  • Lamprey, H. F. (1964). Estimation of the large mammal densities, biomass and energy exchange in the Tarangire game reserve and the Masai steppe in Tanganyika. East African Wildlife Journal, 2, 1–46.

    Google Scholar 

  • Legendre, S. (1986). Analysis of mammalian communities from the late Eocene and Oligocene of Southern France. Palaeovertebrata, 16, 191–212.

    Google Scholar 

  • Levin, N. E., Simpson, S. W., Quade, J., Cerling, T. E., & Frost, S. R. (2008). Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. In J. Quade & J. G. Wynn (Eds.), The geology of early humans in the horn of Africa: Geological Society of America Special Paper 446 (pp. 215–234).

  • Lewis, M. E. (1997). Carnivoran paleoguilds of Africa: Implications for hominid food procurement strategies. Journal of Human Evolution, 32(2–3), 257–288.

    Article  CAS  PubMed  Google Scholar 

  • Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Marean, C. W., Dominguez-Rodrigo, M., & Pickering, T. R. (2004). Skeletal element equifinality in zooarchaeology begins with method: The evolution and status of the “shaft critique”. Journal of Taphonomy, 2, 69–98.

    Google Scholar 

  • Mehlman, M. J. (1989). Later quaternary archaeological sequences in Northern Tanzania. Ph.D. Dissertation, University of Illinois.

  • Musiba, C. M. (1999). Laetoli Pliocene paleoecology: A reanalysis via morphological and bahavioral approaches. Ph.D. Dissertation, Department of Anthropology, University of Chicago, Illinois.

  • Musiba, C., Magori, C., Stoller, M., Stein, T., Branting, S., Vogt, M., et al. (2007). Taphonomy and paleoecological context of the Upper Laetolil Beds (Localities 8 and 9), Laetoli in northern Tanzania. In R. Bobe, Z. Alemseged, & A. K. Behrensmeyer (Eds.), Hominin environments in the East African pliocene: An assessment of the faunal evidence (pp. 257–278). New York: Springer.

  • Pickering, T. R., Marean, C. W., & Dominguez-Rodrigo, M. (2003). Importance of limb bone shaft fragments in zoarchaeology: A response to “On in situ attrition and vertebrate body parts profiles” (2002) by M.C. Stiner. Journal of Archaeological Science, 30, 1469–1482.

    Article  Google Scholar 

  • Plummer, T. W., & Bishop, L. C. (1994). Hominid paleocology at Olduvai Gorge, Tanzania, as indicated by antelope remains. Journal of Human Evolution, 27, 47–76.

    Article  Google Scholar 

  • Plummer, T. W., Bishop, L. C., & Hertel, F. (2008). Habitat preference of extant African bovids based on astragalus morphology: Operationalizing ecomorphology for palaeoenvironmental reconstruction. Journal of Archaeological Science, 35, 3016–3027.

    Article  Google Scholar 

  • Reed, K. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.

    Article  CAS  PubMed  Google Scholar 

  • Reed, K. (2008). Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. Journal of Human Evolution, 54, 743–768.

    Article  PubMed  Google Scholar 

  • Rioux, G. (1995). Savanes. l′herbe, l′arbre et l′homme en terres tropicales. Paris: Masson.

    Google Scholar 

  • Rodriguez, J. (1999). Use of cenograms in mammalian palaeoecology. A critical review. Lethaia, 32, 331–347.

    Article  Google Scholar 

  • Scheel, D., & Packer, C. (1995). Variation in predation by lions: Tracking a movable feast. In A. R. E. Sinclair & P. Arcese (Eds.), Serengeti II. Dynamics, management, and conservation of an ecosystem (pp. 299–314). Chicago: The University of Chicago Press.

    Google Scholar 

  • Shipman, P., & Harris, J. M. (1988). Habitat preference and paleoecology of Australopithecus boisei in Eastern Africa. In F. E. Grine (Ed.), Evolutionary History of the “Robust” Australopithecines (pp. 343–382). New York: Aldine de Gruyter.

    Google Scholar 

  • Sikes, N. (1994). Early hominid habitat preferences in East Africa: Paeosol carbonate isotopic evidence. Journal of Human Evolution, 27, 25–45.

    Article  Google Scholar 

  • Sikes, N., & Ashley, G. M. (2008). Stable isotopes of pedogenic carbonates as indicators of paleoecology in the Plio-Pleistocene (upper Bed I), western margin of the Olduvai basin. Journal of Human Evolution, 53, 574–594.

    Article  Google Scholar 

  • Snelson, D., & Scott, J. (1992). Tarangire national park. Arusha: TANAPA.

  • Su, D. F., Ambrose, S. H., DeGusta, D., & Haile-Selassie, Y. (2009). Paleoenvironment. In Y. Haile-Selassie & G. WoldeGabriel (Eds.), Ardipithecus kadabba. Late Miocene evidence from the Middle Awash, Ethiopia (pp. 521–548). California: University of California Press.

    Google Scholar 

  • Su, D. F., & Harrison, T. (2008). Ecological implications of the relative rarity of fossil hominins at Laetoli. Journal of Human Evolution, 55(4), 672–681.

    Article  PubMed  Google Scholar 

  • Tappen, M. (1995). Savanna ecology and natural bone deposition: Implications for early hominid site formation, hunting, and scavenging. Current Anthropology, 36, 223–260.

    Article  Google Scholar 

  • Tyler, F., & Behrensmeyer, A. K. (2006). Changing patterns of carnivore modification in a landscape bone assemblage, Amboseli Park, Kenya. Journal of Archeological Science, 33, 1718–1733.

    Article  Google Scholar 

  • Valverde, J. A. (1964). Remarques sur la structure et evolution des communautés de vertebres terrestres. 1. Structure d’une communaute, 11. Rapports entre predateurs et proies. La Terre et la Vie, 111, 121–154.

    Google Scholar 

  • Valverde, J. A. (1967). Estructura de una Comunidad de vertebrados terrestres. Monografias de la Estacidn Bioldgica de Doriana, 1, 1–129.

    Google Scholar 

  • Vrba, E. (1980). The significance of bovid remains as indicators of environment and predation patterns. In A. K. Behrensmeyer & A. Hill (Eds.), Fossils in the Making (pp. 247–271). Chicago: The University of Chicago Press.

    Google Scholar 

  • Weigelt, J. (1928). Rezente Wirdeltierleichen und ihre paläobiologische Bedeutung. Leipzig: Verlag von Max Weg.

    Google Scholar 

  • White, T. D., Ambrose, S. H., Suwa, G., Su, D. F., DeGusta, D., Bernor, R. L., et al. (2009). Macrovertebrate Paleontology and the Pliocene Habitat of Ardipithecus ramidus. Science, 326, 87–92.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Musiba.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11692-010-9090-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez-Rodrigo, M., Musiba, C.M. How Accurate are Paleoecological Reconstructions of Early Paleontological and Archaeological Sites?. Evol Biol 37, 128–140 (2010). https://doi.org/10.1007/s11692-010-9087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-010-9087-2

Keywords

Navigation