Evolutionary Biology

, Volume 36, Issue 4, pp 377–385 | Cite as

The Developmental Basis of Variational Modularity: Insights from Quantitative Genetics, Morphometrics, and Developmental Biology

Synthesis Paper


Groups of correlated characters (variational modules) often are considered to be the result of dissociated local developmental factors, i.e., of a modular genotype–phenotype map. But certain sets of pleiotropic factors can equally well induce modular phenotypic variation—no local developmental factors are necessary for a modular covariance structure. It is thus not possible to infer genetic or developmental modularity from standing variation alone. Yet, only for approximately linear genotype–phenotype maps is the induced covariance structure stable over changes of the phenotypic mean. For larger genetic and phenotypic variation, such as on a macroevolutionary level, developmental effects often are nonlinear and variational modularity remains stable only when it is realized by local dissociated developmental factors with no overlap of pleiotropic ranges. The evo-devo concept of modularity concurs only at this macroevolutionary level with the quantitative notion of variational modularity. Empirical evidence on the genetic and developmental architecture underlying phenotypic variation is inconclusive and partly subject to methodological problems. Many studies seem to indicate modularized phenotypic variation and local clusters of QTL effects, whereas other studies find support for several alternative models of modularity and report continuous distributions of QTL effects. This inconsistency partly results from the neglect of spatial relationships among the measured traits. Given the complex development of higher organisms, a combination of pleiotropic factors and more local developmental effects with a hierarchical, overlapping, and more or less continuous distribution appears most likely.


Canalization Genotype–phenotype map Modularity Morphological integration Phenotype landscape QTL 


  1. Agrawal, A. F., & Stinchcombe, J. R. (2009). How much do genetic covariances alter the rate of adaptation? Proceedings of the Royal Society of London Series B, 276, 1183–1191.PubMedGoogle Scholar
  2. Albert, A. Y., Sawaya, S., Vines, T. H., Knecht, A. K., Miller, C. T., Summers, B. R., Balabhadra, S., Kingsley, D. M., & Schluter, D. (2008). The genetics of adaptive shape shift in stickleback: Pleiotropy and effect size. Evolution, 62(1), 76–85.PubMedGoogle Scholar
  3. Arnold, S. J., Bürger, R., Holenhole, P. A., Beverly, C. A., & Jones, A. G. (2008). Understanding the evolution and stability of the G-matrix. Evolution, 62, 2451–2461.PubMedGoogle Scholar
  4. Ashe, H. L., & Briscoe, J. (2006). The interpretation of morphogen gradients. Development, 133(3), 385–394.PubMedGoogle Scholar
  5. Baatz, M., & Wagner, G. P. (1997). Adaptive inertia caused by hidden pleiotropic effects. Theoretical Population Biology , 51, 49–66.Google Scholar
  6. Badyaev, A. V., & Foresman, K. R. (2004). Evolution of morphological integration. I. functional units channel stress-induced variation in shrew mandibles. American Naturalist, 163(6), 868–879.PubMedGoogle Scholar
  7. Barton, N. H., & Turelli, M. (1987). Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genetical Research, 49(2),157–173.PubMedGoogle Scholar
  8. Bastir, M., & Rosas, A. (2005). Hierarchical nature of morphological integration and modularity in the human posterior face. American Journal of Physical Anthropology, 128(1), 26–34.PubMedGoogle Scholar
  9. Bastir, M., & Rosas, A. (2006). Correlated variation between the lateral basicranium and the face: A geometric morphometric study in different human groups. Archives of Oral Biology, 51, 814–824.PubMedGoogle Scholar
  10. Beldade, P., Koops, K., & Brakefield, P. M. (2002). Developmental constraints versus flexibility in morphological evolution. Nature, 416(6883), 844–847.PubMedGoogle Scholar
  11. Bookstein, F. L., Gunz, P., Mitteroecker, P., Prossinger, H., Schaefer, K., & Seidler, H. (2003). Cranial integration in Homo: Singular warps analysis of the midsagittal plane in ontogeny and evolution. Journal of Human Evolution, 44(2), 167–187.PubMedGoogle Scholar
  12. Brandon, R. N. (2005). Evolutionary modules: Conceptual analyses and empirical hypotheses. In W. Callebaut & D. Rasskin-Gutman (Eds.), Modularity understanding the development and evolution of natural complex systems (pp. 51–60). Cambridge, MA: MIT Press.Google Scholar
  13. Burgio, G., Baylac, M., Heyer, E., & Montagutelli, X. (2009). Genetic analysis of skull shape variation and morphological integration in the mouse using interspecific recombinant congenic strains between C57BL/6 and mice of the mus spretus species. Evolution, 63(10), 2668–2686.PubMedGoogle Scholar
  14. Burian, R. M. (2004). Molecular epigenesis, molecular pleiotropy, and molecular gene definitions. History and Philosophy of the Life Sciences, 26(1), 59–80.PubMedGoogle Scholar
  15. Callebaut, W., & Rasskin-Gutman, D. (Eds.). (2005). Modularity: Understanding the development and evolution of natural complex systems. Cambridge MA:MIT Press.Google Scholar
  16. Carter, A. J., Hermisson J., & Hansen, T. F. (2005). The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theoretical Population Biology, 68(3),179–196.PubMedGoogle Scholar
  17. Chernoff, B., & Magwene, P. M. (1999). Morphological integration: Forty years later (pp. 319–354). Chicago: University of Chicago.Google Scholar
  18. Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36, 499–516.Google Scholar
  19. Cheverud, J. M. (1984). Quantitative genetic and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–171.PubMedGoogle Scholar
  20. Cheverud, J. M. (1995). Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145(1), 63–89.Google Scholar
  21. Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50.Google Scholar
  22. Cheverud, J. M., Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., & Pletscher, L. S. (2004). Pleiotropic effects on mandibular morphology II: Differential epistasis and genetic variation in morphological integration. Journal of Experimental Zoology (Mol Dev Evol), 302B, 424–435.Google Scholar
  23. Cheverud, J. M., & Routman, E. J. (1995). Epistasis and its contribution to genetic variance components. Genetics, 139(3), 1455–1461.PubMedGoogle Scholar
  24. Cobb, S. N., & Baverstock, H. (2009). Tooth root and craniomandibular morphological integration in the common Chimpanzee (Pan troglodytes): Alternative developmental models for the determinants of root length. Frontiers of Oral Biology, 13, 121–127.PubMedGoogle Scholar
  25. Dudley, A. M., Janse, D. M., Tanay, A., Shamir, R., & Church, G. M. (2005). A global view of pleiotropy and phenotypically derived gene function in yeast. Molecular Systems Biology, 1, E1–E11.Google Scholar
  26. Eroukhmanoff, F. (2009). Just how much is the G-matrix actually constraining adaptation? Evolutionary Biology, 36, 323–326.Google Scholar
  27. Fisher, R. A. (1930). The genetical theory of natural selection. Oxford, UK: Clarendon.Google Scholar
  28. Forgacs, G., & Newman, S. A. (2005). Biological physics of the developing embryo. Cambridge, UK: Cambridge University Press.Google Scholar
  29. Galis, F., & Metz, J. A. J. (2001). Testing the vulnerability of the phylotypic stage: On modularity and evolutionary conservation. Journal of Experimental Zoology, 291, 195–204.PubMedGoogle Scholar
  30. Gavrilets, S. (2004). Fitness landscapes and the origin of species (monographs in population biology). Princeton, NJ: Princton University Press.Google Scholar
  31. Gilchrist M. A., & Nijhout, H. F. (2001). Nonlinear developmental processes as sources of dominance. Genetics, 159, 423–432.PubMedGoogle Scholar
  32. Gjuvsland, A. B., Hayes, B. J., Omholt, S. W., & Carlborg, O. (2007). Statistical epistasis is a generic feature of gene regulatory networks. Genetics, 175(1), 411–420.PubMedGoogle Scholar
  33. Goldbeter, A., Gonze, D., & Pourquié, O. (2007). Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Developmental Dynamics, 236, 1495–1508.PubMedGoogle Scholar
  34. Goswami, A. (2006). Cranial modularity shifts during mammalian evolution. American Naturalist, 168(2), 270–280.PubMedGoogle Scholar
  35. Gromko, M. H. (1995). Unpredictability of correlated response to selection: Pleiotropy and sampling interact. Evolution, 49, 685–693.Google Scholar
  36. Gunz, P., & Harvati, K. (2007). The Neanderthal “chignon”: Variation, integration, and homology. Journal of Human Evolution, 52(3), 262–274.PubMedGoogle Scholar
  37. Hallgrimsson, B., Brown, J. J., Ford-Hutchinson, A. F., Sheets, H. D., Zelditch M. L., & Jirik F. R. (2006). The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration. Evolution & Development, 8(1), 61–73.Google Scholar
  38. Hallgrimsson, B., & Lieberman, D. E. (2008). Mouse models and the evolutionary developmental biology of the skull. Integrative and Comparative Biology, 48, 373–384.Google Scholar
  39. Hallgrimsson, B., Lieberman, D. E., Young, N. M., Parsons, T., & Wat, S. (2007). Evolution of covariance in the mammalian skull. In G. Bock & J. Goode (Eds.), Tinkering: The microevolution of development, Novartis foundation symposium 284 (pp. 164–190). Chichester, UK: Wiley.Google Scholar
  40. Hallgrimsson, B., Willmore, K., Dorval, C., & Cooper, D. M. (2004). Craniofacial variability and modularity in macaques and mice. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 302(3), 207–225.PubMedGoogle Scholar
  41. Hallgrimsson, B., Willmore, K., & Hall, B. K. (2002). Canalization, developmental stability, and morphological integration in primate limbs. American Journal of Physical Anthropology, 35, 131–158.PubMedGoogle Scholar
  42. Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems, 69(2–3), 83–94.PubMedGoogle Scholar
  43. Hansen, T. F. (2006). The evolution of genetic architecture annual review of ecology. Evolution, and Systematics, 37, 123–157.Google Scholar
  44. Hansen, T. F. (2008). Macroevolutionary quantitative genetics? A comment on Polly. Evolutionary Biology, 35(5), 182–185.Google Scholar
  45. Hansen, T. F., Alvarez-Castro, J. M., Carter, A. J., Hermisson, J., & Wagner G. P. (2006). Evolution of genetic architecture under directional selection. Evolution, 60(8), 1523–1536.PubMedGoogle Scholar
  46. He, X., & Zhang, J. (2006). Toward a molecular understanding of pleiotropy. Genetics, 173(4), 1885–1891.PubMedGoogle Scholar
  47. Hermisson, J., & McGregor, A. P. (2008). Pleiotropic scaling and QTL data. Nature, 456, E3–E4.PubMedGoogle Scholar
  48. Hermisson, J., & Wagner, G. P. (2004). The population genetic theory of hidden variation and genetic robustness. Genetics, 168(4), 2271–2284.PubMedGoogle Scholar
  49. Houle, D. (1991). Genetic covariance of fitness correlates: What genetic correlations are made of and why it matters. Evolution, 45, 630–648.Google Scholar
  50. Juenger, T., Perez-Perez, J. M., Bernal, S., & Micol, J. L. (2005). Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: Evidence for modular genetic architecture. Evolution & Development, 7(3), 259–271.Google Scholar
  51. Kelly, J. K. (2009). Connecting QTLS to the g-matrix of evolutionary quantitative genetics. Evolution, 63(4), 813–825.PubMedGoogle Scholar
  52. Kenney-Hunt, J. P., Wang, B., Norgard, E. A., Fawcett, G., Falk, D., Pletscher, L. S., et al. (2008). Pleiotropic patterns of quantitative trait loci for 70 murine skeletal traits. Genetics, 178(4), 2275–2288.PubMedGoogle Scholar
  53. Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution and Systematics, 39, 115–132.Google Scholar
  54. Klingenberg, C. P, Leamy, L. J., & Cheverud, J. M. (2004). Integration and modularity of the quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166, 1909–1921.PubMedGoogle Scholar
  55. Klingenberg, C. P., Leamy, L. J, Routman, E. J., & Cheverud, J. M. (2001) Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics, 157, 785–802.PubMedGoogle Scholar
  56. Klingenberg, C. P., Mebus, K., & Auffray, J. C. (2003) Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evolution & Development, 5(5), 522–531.Google Scholar
  57. Klingenberg, C. P., & Zaklan, S. D. (2000). Morphological integration between developmental compartments in the Drosophila wing. Evolution, 54(4), 1273–1285.PubMedGoogle Scholar
  58. Kulemeyer, C., Asbahr, K., Gunz, P., Frahnert, S., & Bairlein, F. (2009). Functional morphology and integration of corvid skulls—a 3D geometric morphometric approach. Frontiers in Zoology, 6, 2.PubMedGoogle Scholar
  59. Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allometry. Evolution, 33, 402–416.Google Scholar
  60. Lawler, R. R. (2008). Morphological integration and natural selection in the postcranium of wild verreaux’s sifaka (Propithecus verreauxi verreauxi). American Journal of Physical Anthropology, 136(2), 204–213.PubMedGoogle Scholar
  61. Leamy, L. J., Routman, E. J., & Cheverud, J. M. (1999) Quantitative trait loci for early- and late-developing skull characteristics in mice: A test of the genetic independence model of morphological integraion. American Naturalist, 153(2), 201–214.Google Scholar
  62. Levine, E., Zhang, Z., Kuhlman, T., & Hwa T. (2007). Quantitative characteristics of gene regulation by small RNA. PLoS Biology, 5(9), e229.PubMedGoogle Scholar
  63. Lewenz, M. A., & Whiteley M. A. (1902). Data for the problem of evolution in man. A second study of variability and correlation of the hand. Biometika, 1, 345–360.Google Scholar
  64. Lewis, J., Slack, J. M. W, & Wolpert, L. (1977). Thresholds in development. Journal of Theoretical Biology, 65(3):579–590.PubMedGoogle Scholar
  65. Lewontin, R. C. (1978). Adaptation. Scientific American, 239(3), 156–169.CrossRefGoogle Scholar
  66. Marquez, E. J. (2008). A statistical framework for testing modularity in multidimensional data. Evolution, 62(10), 2688–2708.PubMedGoogle Scholar
  67. Marroig, G., De Vivo, M., & Cheverud, J. (2004). Cranial evolution in sakis (Pithecia, Platyrrhini) II: Evolutionary processes and morphological integration. Journal of Evolutionary Biology, 17, 144–155.PubMedGoogle Scholar
  68. Martinez-Abadias, N., Paschetta, C., de Azevedo, S., Esparza, M., & Gonzalez-Jose, R. (2009). Developmental and genetic constraints on neurocranial globularity: Insights from analyses of deformed skulls and quantitative genetics. Evolutionary Biology, 36, 37–56.Google Scholar
  69. Mezey, J. G., Cheverud, J., & Wagner, G. P. (2000) Is the genotype–phenotype map modular? A statistical approach using mouse quantitative trait loci data. Genetics, 156, 305–311.PubMedGoogle Scholar
  70. Mitteroecker, P., & Bookstein, F. L. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56(5), 818–836.PubMedGoogle Scholar
  71. Mitteroecker, P., & Bookstein, F. L. (2008). The evolutionary role of modularity and integration in the hominoid cranium. Evolution 62(4), 943–958.PubMedGoogle Scholar
  72. Mitteroecker P., & Bookstein F. L. (2009). The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans. Evolution, 63(3), 727–737.PubMedGoogle Scholar
  73. Monteiro, L. R, Bonato, V., & Dos Reis, S. F. (2005). Evolutionary integration and morphological diversification in complex morphological structures: Mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution & Development, 7(5), 429–439.Google Scholar
  74. Müller G. B. (1990) Developmental mechanisms at the origin of morphological novelty: A side-effect hypothesis. In M. Nitecki (Ed.), Evolutionary innovations (pp. 99–130). Chicago: University of Chicago Press.Google Scholar
  75. Müller, G. B. (2003) Embryonic motility: Environmental influences and evolutionary innovation. Evolution & Development, 5(1), 56–60.Google Scholar
  76. Müller, G. B. (2007). Evo-devo: Extending the evolutionary synthesis. Nature Reviews. Genetics, 8(12), 943–949.PubMedGoogle Scholar
  77. Nemeschkal, H. L. (1999). Morphometric correlation patterns of adult birds (Fringillidae: Passeriformes and Columbiformes) mirror the expression of developmental control genes. Evolution, 53(3), 899–918.Google Scholar
  78. Olson, E. C., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.Google Scholar
  79. Omholt, S. W., Plahte, E., Øyehaug, L., & Xiang, K. (2000). Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics, 155, 969–980.PubMedGoogle Scholar
  80. Parsons, T. E., Kristensen, E., Hornung, L., Diewert, V. M., Boyd, S. K., German R. Z., et al. (2008). Phenotypic variability and craniofacial dysmorphology: Increased shape variance in a mouse model for cleft lip. Journal of Anatomy, 212(2), 135–143.PubMedGoogle Scholar
  81. Pavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. B., & Cheverud, J. M. (2008) Genetic variation in pleiotropy differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution, 62(1), 199–213.PubMedGoogle Scholar
  82. Pigliucci, M. (2006) Genetic variance–covariance matrices: A critique of the evolutionary quantitative genetics research program. Biology and Philosophy, 21, 1–23.Google Scholar
  83. Polly, P. D. (2008). Developmental dynamics and G-matrices: Can morphometric spaces be used to model phenotypic evolution? Evolutionary Biology, 35(2), 83–96.Google Scholar
  84. Pyeritz, R. E. (1989). Pleiotropy revisited: Molecular explanations of a classic concept. American Journal of Medical Genetics, 34(1), 124–134.PubMedGoogle Scholar
  85. Raff, R. (1996) The shape of life: Genes, development, and the evolution of animal form. Chicago: University Chicago Press.Google Scholar
  86. Reyment, R., & Jöreskog, K. G. (1993). Applied factor analysis in the natural science. Cambridge: Cambridge University Press.Google Scholar
  87. Rice, S. H. (1998). The evolution of development and the breaking of von Baer’s laws: Modeling the evolution of development with epistasis. Evolution, 52, 647–656.Google Scholar
  88. Rice, S. H. (2002). A general population genetic theory for the evolution of developmental interactions. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15518–15523.PubMedGoogle Scholar
  89. Rice, S. H. (2004). Developmental associations between traits: Covariance and beyond. Genetics, 166, 513–526.PubMedGoogle Scholar
  90. Richtsmeier, J. T., & DeLeon, V. B. (2009). Morphological integration of the skull in craniofacial anomalies. Orthodontics and Craniofacial Research, 12, 149–158.PubMedGoogle Scholar
  91. Riedl, R. J. (1978). Order in living organisms. New York: John Wiley and Sons.Google Scholar
  92. Riska, B. (1989). Composite traits, selection response, and evolution. Evolution,43(6), 1172–1191.Google Scholar
  93. Roseman, C. C., Kenney-Hunt, J. P., & Cheverud, J. M. (2009). Phenotypic integration without modularity: Testing hypotheses about the distribution of pleiotropic quantitative trait loci in a continuous space. Evolutionary Biology, 36, 282–291.Google Scholar
  94. Sawin, P. B., Fox, R. R., & Latimer, H. B. (1970). Morphogenetic studies of the rabbit XLI. Gradients of correlation in the architecture of morphology. American Journal of Anatomy, 128(2), 137–145.PubMedGoogle Scholar
  95. Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106, 467–482.Google Scholar
  96. Su, Z., Zeng, Y., & Gu, X. (2009). A preliminary analysis of gene pleiotropy estimated from protein sequences. Journal of Experimental Zoology (Molecular Development Evolution), (321B), 1–10.Google Scholar
  97. Terentjev, P. V. (1931). Biometrische Untersuchungen übe die morphologischen Merkmale von Rana ridibunda Pall. (Amphibia, Salientia). Biometrika, 23, 23–51.Google Scholar
  98. True, J. R., & Haag, E. S. (2001) Developmental system drift and flexibility in evolutionary trajectories. Evolution & Development, 3(2), 109–119.Google Scholar
  99. Tyler, A. L., Asselbergs, F. W., Williams, S. M., & Moore, J. H. (2009). Shadows of complexity: What biological networks reveal about epistasis and pleiotropy. Bioessays, 31(2), 220–227.PubMedGoogle Scholar
  100. Veitia R. A. (Ed.). (2006). The biology of genetic dominance. Georgetown, TX: Landes Bioscience.Google Scholar
  101. Wagner, G. P. (1989). Multivariate mutation-selection balance with constrained pleiotropic effects. Genetics, 122, 223–234.PubMedGoogle Scholar
  102. Wagner, G. P. (1990). A comparative study of morphological integration in Apis mellifera (Insecta, Hymenoptera). Zeitschrift fur zoologische Systematik und Evolutionsforschung, 28, 48–61.Google Scholar
  103. Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50(3):967–976.Google Scholar
  104. Wagner, G. P., Booth G., & Homayoun-Chaichia H. (1997). A population genetic theory of canalization. Evolution, 51, 329–347.Google Scholar
  105. Wagner, G. P., Kenney-Hunt, J. P., Pavlicev, M., Peck, J. R., Waxman, D., & Cheverud J. M. (2008). Pleiotropic scaling of gene effects and the ’cost of complexity’. Nature, 452(7186), 470–472.PubMedGoogle Scholar
  106. Wagner, G. P., & Mezey, J. G. (2004). The role of genetic architecture constraints in the origin of variational modularity. In G. Schlosser, & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 338–358). Chicago: The University of Chicago Press.Google Scholar
  107. Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8, 921–931.PubMedGoogle Scholar
  108. Weiss, K. M., & Fullerton, S. M. (2000). Phenogenetic drift and the evolution of genotype–phenotype relationships. Theoretical Population Biology, 57, 187–195.PubMedGoogle Scholar
  109. Whiteley, M. A., & Pearson, K. (1899). Data for the problem of evolution in man. I. A first study of the variability and correlation of the hand. Proceeding of the Royal Society, 65, 126–151.Google Scholar
  110. Willmore, K. E., Zelditch, M. L., Young, N., Ah-Seng, A, Lozanoff, S., & Hallgrimsson, B. (2006). Canalization and developmental stability in the Brachyrrhine mouse. Journal of Anatomy, 208(3), 361–372.PubMedGoogle Scholar
  111. Winther, R. G. (2001). Varieties of modules: Kinds, levels, origins, and behaviors. Journal of Experimental Zoology, 291(2), 116–129.PubMedGoogle Scholar
  112. Wolf, J. B. (2002). The geometry of phenotypic evolution in developmental hyperspace. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 15849–15851.PubMedGoogle Scholar
  113. Wolf, J. B, Frankino, W. A., Agrawal, A. F., Brodie, E. D., 3rd., & Moore, A. J. (2001). Developmental interactions and the constituents of quantitative variation. Evolution, 55(2), 232–245.PubMedGoogle Scholar
  114. Wolf, J. B., Pomp, D., Eisen, E. J., Cheverud, J. M., & Leamy, L. J. (2006). The contribution of epistatic pleiotropy to the genetic architecture of covariation among polygenic traits in mice. Evolution & Development, 8(5), 468–476.Google Scholar
  115. Young, R. L., & Badyaev, A. V. (2006). Evolutionary persistence of phenotypic integration : Influence of developmental and functional relationships on complex trait evolution. Evolution, 60(0), 1291–1299.PubMedGoogle Scholar
  116. Zelditch, M. L. (1987). Evaluating models of developmental integration in the laboratory rat using confirmatory factor analysis. Systematic Zoology, 36, 368–380.Google Scholar
  117. Zelditch M. L., Wood A. R., Bonett R. M., & Swiderski D. L. (2008). Modularity of the rodent mandible: Integrating bones, muscles, and teeth. Evolution & Development, 10(6), 756–768.Google Scholar
  118. Zou, L., Sriswasdi, S., Ross, B., Missiuro, P. V., Liu, J., & Ge, H. (2008). Systematic analysis of pleiotropy in C. elegans early embryogenesis. PLoS Computational Biology, 4(2), e1000003.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Theoretical BiologyUniversity of ViennaViennaAustria
  2. 2.Konrad Lorenz Institute for Evolution and Cognition ResearchAltenbergAustria

Personalised recommendations