Evolutionary Biology

, 36:416 | Cite as

Searching for Modular Structure in Complex Phenotypes: Inferences from Network Theory

  • S. Ivan Perez
  • Marcus A. M. de Aguiar
  • Paulo R. GuimarãesJr
  • Sergio F. dos Reis
Tools and Techniques


The notion of modularity has become a unifying principle to understand structural and functional aspects of biological organization at different levels of complexity. Recently, deciphering the modular organization of molecular systems has been greatly aided by network theory. Nevertheless, network theory is completely absent from the investigation of modularity of complex macroscopic phenotypes, a fundamental level of organization at which organisms experience and interact with the environment. Here, we used geometric descriptors of phenotypic variation to derive a network representation of a complex morphological structure, the mammalian mandible, in terms of nodes and links. Then, by integrating the network representation and description with random matrix theory, we uncovered a modular organization for the mammalian mandible, which deviates significantly from an equivalent random network. The modules revealed by the network analysis correspond to the four morphogenetic units recognized for the mammalian mandible on a developmental basis. Furthermore, these modules are known to be affected only by particular genes and are also functionally differentiated. This study shows that the powerful formalism of network theory can be applied to the discovery of modules in complex phenotypes and opens the possibility of an integrated approach to the study of modularity at all levels of organizational complexity.


Geometric morphometrics Correlation networks Variational modularity Simulated annealing Mammalian mandible 


  1. Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the ‘revolution’. The Italian Journal of Zoology, 71, 5–16.CrossRefGoogle Scholar
  2. Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Review of Modern Physics, 74, 47–97.CrossRefGoogle Scholar
  3. Atchley, W. R., & Hall, B. K. (1991). A model for development and evolution of complex morphological structures. Biological Review, 66, 101–157.Google Scholar
  4. Batagelj, V., & Mrvar, A. (2008). Pajek 1.23 software. http://vlado.fmf.uni-lj.si/pub/networks/pajek/.
  5. Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. London: Cambridge University Press.Google Scholar
  6. Cheverud, J. M. (2004). Modular pleiotropic effects of quantitative trait loci on morphological traits. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 132–153). Chicago: Chicago University Press.Google Scholar
  7. Cheverud, J. M., Routman, E. J., & Irschick, D. K. (1997). Pleiotropic effects of individual gene loci on mandibular morphology. Evolution, 51, 2004–2014.CrossRefGoogle Scholar
  8. Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A. (2005). Comparing community structure identification. Journal of Statistical Mechanics P09008.Google Scholar
  9. Davidson, E. H., & Levine, M. (2008). Properties of developmental gene regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 20063–20066.CrossRefPubMedGoogle Scholar
  10. de Aguiar, M. A. M., & Bar-Yam, Y. (2005). Spectral analysis and the dynamic response of complex networks. Physical Review, E71, 6106.Google Scholar
  11. Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., Pletscher, L. S., & Cheverud, J. M. (2003). Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. Journal of Experimental Zoology Molecular and Developmental Evolution, 296B, 58–79.CrossRefGoogle Scholar
  12. Galewski, T., Mauffrey, J. F., Leite, Y. L. R., Patton, J. L., & Douzery, E. J. P. (2005). Ecomorphological diversification among South American spiny rats (Rodentia: Echimyidae): A phylogenetic and chronological approach. Molecular Phylogenetics and Evolution, 34, 601–615.CrossRefPubMedGoogle Scholar
  13. Guimerà, R., & Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature, 433, 895–900.CrossRefPubMedGoogle Scholar
  14. Guimerà, R., Sales-Pardo, M., & Amaral, L. A. N. (2004). Modularity from fluctuations in random graphs and complex networks. Physical Review E, 70, 025101.CrossRefGoogle Scholar
  15. Hall, B. K. (2003). Unlocking the black box between genotype and phenotype: Cell condensations as morphogenetic (modular) units. Biology and Philosophy, 18, 219–247.CrossRefGoogle Scholar
  16. Hallgrimsson, B., Lieberman, D. E., Young, N. M., Parsons, T., & Wat, S. (2007). Evolution of covariance in the mammalian skull. Novartis Foundation Symposium, 284, 164–190.CrossRefPubMedGoogle Scholar
  17. Hintze, A., & Adami, C. (2008). Evolution of complex modular biological networks. PLoS Computational Biology, 4, e23.CrossRefPubMedGoogle Scholar
  18. Klingenberg, C. P., Mebus, K., & Auffray, J.-C. (2003). Developmental integration in a complex morphological structure: How distinct are the modules in the mouse mandible? Evolution and Development, 5, 522–531.CrossRefPubMedGoogle Scholar
  19. Klingenberg, C. P., & Zaklan, S. D. (2000). Morphological integration between developmental compartments in the Drosophila wing. Evolution, 54, 1273–1285.PubMedGoogle Scholar
  20. Kreimer, A., Boresntein, E., Gophna, U., & Ruppin, E. (2008). The evolution of modularity in bacterial metabolic networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 6976–6981.CrossRefPubMedGoogle Scholar
  21. Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967.CrossRefGoogle Scholar
  22. Levin, S. A. (2003). Complex adaptive systems: Exploring the known, the unknown and the unknowable. Bulletin of the American Mathematical Society, 40, 3–19.CrossRefGoogle Scholar
  23. Ma’ayan, A. (2009). Insights into the organization of biochemical regulatory networks using graph theory analyses. Journal of Biological Chemistry, 284, 5451–5455.CrossRefPubMedGoogle Scholar
  24. Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology and ontogeny during cranial evolution of New World monkeys. Evolution, 55, 2576–2600.PubMedGoogle Scholar
  25. Mehta, M. L. (2004). Random matrices. New York: Academic Press.Google Scholar
  26. Mitteroecker, P., & Bookstein, F. (2009). The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans. Evolution, 63, 727–737.CrossRefPubMedGoogle Scholar
  27. Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103, 8577–8582.CrossRefPubMedGoogle Scholar
  28. Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Simpson, G. L., Stevens, M. H. H. (2008). Vegan: Community ecology package. R package version 1.11-4. http://cran.r-project.org.
  29. Palla, G., & Vattay, G. (2006). Spectral transitions in networks. New Journal of Physics, 8, 307.CrossRefGoogle Scholar
  30. Peres-Neto, P. R., & Jackson, D. A. (2001). How well do multivariate data sets match? The advantages of a procrustean superimposition approach over the Mantel test. Oecologia, 129, 169–178.CrossRefGoogle Scholar
  31. Perez, S. I., Diniz-Filho, J. A. F., Rohlf, F. J., & dos Reis, S. F. (2009). Morphological diversification among South American spiny rats (Rodentia: Echimyidae): Ecological and phylogenetic factors. Journal of the Linnean Society, 98, 646–660.Google Scholar
  32. Porto, A., de Oliveira, F. B., Shirai, L. T., De Conto, V., & Marroig, G. (2008). The evolution of modularity in the mammalian skull I: Morphological integration patterns and magnitudes. Evolutionary Biology, 35, 1–18.CrossRefGoogle Scholar
  33. Raff, R. A. (1996). The shape of life: Genes, development, and the evolution of animal form. Chicago: University of Chicago Press.Google Scholar
  34. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297, 1551–1555.CrossRefPubMedGoogle Scholar
  35. Rohlf, F. J. (2007). tps series softwares. http//life.bio.sunysb.edu/morph/.
  36. Sales-Pardo, M., Guimerà, R., Moreira, A. A., & Amaral, L. A. N. (2007). Extracting the hierarchical organization of complex systems. Proceedings of the National Academy of Sciences of the United States of America, 104, 15224–15229.CrossRefPubMedGoogle Scholar
  37. Schlosser, G., & Wagner, G. P. (Eds.). (2004). Modularity in development and evolution. Chicago: Chicago University Press.Google Scholar
  38. Sheets, H. D. (2003). IMP-integrated morphometrics package. Department of Physics, Canisius College, Buffalo, New York.Google Scholar
  39. Steinhauser, D., Krall, L., Müssig, C., Büssis, D., & Usadel, B. (2008). Correlation networks. In B. H. Junker & F. Schreiber (Eds.), Analysis of biological networks (pp. 305–333). New Jersey: Wiley.CrossRefGoogle Scholar
  40. Wagner, G. P. (1984). On the eigenvalues of genetic and phenotypic dispersion matrices: Evidence for a nonrandom organization of quantitative character variation. Journal of Mathematical Biology, 21, 77–95.Google Scholar
  41. Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.Google Scholar
  42. Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews. Genetics, 8, 921–931.CrossRefPubMedGoogle Scholar
  43. Wang, Z., & Zhang, J. (2007). In search of the biological significance of modular structures in protein networks. PLoS Computational Biology, 3(6), e107.CrossRefPubMedGoogle Scholar
  44. Winther, R. G. (2001). Varieties of modules: Kinds, levels, origins, and behaviours. Journal of Experimental Zoology Molecular and Developmental Evolution, 291, 116–129.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Ivan Perez
    • 1
    • 2
  • Marcus A. M. de Aguiar
    • 3
  • Paulo R. GuimarãesJr
    • 4
  • Sergio F. dos Reis
    • 2
  1. 1.División Antropología, Museo de La PlataUniversidad Nacional de La Plata, CONICETLa PlataArgentina
  2. 2.Departamento de Biologia Animal, IBUniversidade Estadual de CampinasCampinasBrazil
  3. 3.Departamento de Física da Matéria CondensadaIFGW, Universidade Estadual de CampinasCampinasBrazil
  4. 4.Departamento de EcologiaInstituto de Biociências, Universidade de São PauloSão PauloBrazil

Personalised recommendations