Skip to main content
Log in

Inferring the Nature of Allometry from Geometric Data

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The form of an organism is the combination of its size and its shape. For a sample of forms, biologists wish to characterize both mean form and the variation in form. For geometric data, where form is characterized as the spatial locations of homologous points, the first step in analysis superimposes the forms, which requires an assumption about what measure of size is appropriate. Geometric morphometrics adopts centroid size as the natural measure of size, and assumes that variation around the mean form is isometric with size. These assumptions limit the interpretation of the resulting estimates of mean and variance in form. We illustrate these problems using allometric variation in shape. We show that superimposition based on subsets of relatively isometric points can yield superior inferences about the overall pattern of variation. We propose and demonstrate two superimposition techniques based on this idea. In subset superimposition, landmarks are progressively discarded from the data used for superimposition if they result in significant decreases in the variation among the remaining landmarks. In outline superimposition, regularly distributed pseudolandmarks on the continuous outline of a form are used as the basis for superimposition of the landmarks contained within it. Simulations show that these techniques can result in dramatic improvements in the accuracy of estimated variance-covariance matrices among landmarks when our assumptions are roughly satisfied. The pattern of variation inferred by means of our superimposition techniques can be quite different from that recovered from full generalized Procrustes superimposition. The pattern of shape variation in the wings of drosophilid flies appears to meet these assumptions. Adoption of superimposition procedures that incorporate biological assumptions about the nature of size and of the variation in shape can dramatically improve the ability to infer the pattern of variation in geometric morphometric data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the ‘revolution’. The Italian Journal of Zoology, 71(9), 5–16. doi:10.1080/11250000409356545.

    Article  Google Scholar 

  • Akca, M.D. (2003). Generalized procrustes analysis and its applications in photogrammetry. Available at: http://e-collection.ethbib.ethz.ch/ecol-pool/bericht/bericht_363.pdf.

  • Bookstein, F. L. (1986). Size and shape spaces for landmark data in two dimensions. Statistical Science, 1, 181–242. doi:10.1214/ss/1177013696.

    Article  Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bookstein, F. L. (1996). Biometrics, biomathematics, and the morphometric synthesis. Bulletin of Mathematical Biology, 58, 313–365. doi:10.1007/BF02458311.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, P. F., Dean, D., Bookstein, F. L., Friedman, L., Kwon, D., Lewin, J. S., et al. (1999). Three-dimensional magnetic resonance-based morphometrics and ventricular dysmorphology in schizophrenia. Biological Psychiatry, 45(1), 62–67. doi:10.1016/S0006-3223(98)00067-5.

    Article  PubMed  CAS  Google Scholar 

  • de Celis, J. F. (2003). Pattern formation in the Drosophila wing: The development of the veins. BioEssays, 25, 443–451. doi:10.1002/bies.10258.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, M. H., Lehmann, F., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284, 1954–1960. doi:10.1126/science.284.5422.1954.

    Article  PubMed  CAS  Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. Chichester, U.K.: John Wiley and Sons.

    Google Scholar 

  • Dryden, I. L., & Walker, G. (1999). Highly resistant regression and object matching. Biometrics, 55, 820–825. doi:10.1111/j.0006-341X.1999.00820.x.

    Article  PubMed  CAS  Google Scholar 

  • Goodall, C. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society: Series B, 53(2), 285–339.

    Google Scholar 

  • Goodall, C. (1995). Procrustes methods in the statistical analysis of shape revisited. In K. V. Mardia & C. A. Gill (Eds.), Current issues in statistical shape analysis (pp. 18–33). Leeds: Leeds University Press.

    Google Scholar 

  • Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40, 33–51. doi:10.1007/BF02291478.

    Article  Google Scholar 

  • Held, L. I. (2002). Imaginal discs: The genetic and cellular logic of pattern formation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Houle, D., Mezey, J., Galpern, P., & Carter, A. (2003). Automated measurement of drosophila wings. BMC Evolutionary Biology, 3, 25. doi:10.1186/1471-2148-3-25.

    Article  PubMed  Google Scholar 

  • Klingenberg, C.P. (2009). Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a-priori hypotheses. Evolution & Development, 11, (in press).

  • Lele, S. (1993). Euclidean distance matrix analysis (EDMA): Estimation of mean form and mean form difference. Mathematical Geology, 25(5), 573–602. doi:10.1007/BF00890247.

    Article  Google Scholar 

  • Lele, S. R., & McCulloch, C. E. (2002). Invariance, identifiability, and morphometrics. Journal of the American Statistical Association, 97(459), 796–806. doi:10.1198/016214502388618609.

    Article  Google Scholar 

  • Lele, S. R., & Richtsmeier, J. T. (2001). An invariant approach to statistical analysis of shapes. London, U.K: Chapman and Hall–CRC press.

    Google Scholar 

  • Mezey, J. G., & Houle, D. (2005). The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 59(5), 1027–1038.

    PubMed  Google Scholar 

  • Mosimann, J. E. (1970). Size allometry: Size and shape variables with characterizations of lognormal and generalized gamma distributions. Journal of the American Statistical Association, 65(330), 930–945. doi:10.2307/2284599.

    Article  Google Scholar 

  • Richtsmeier, J. T., Lele, S. R., & Cole, T. I. (2005). Landmark morphometrics and the analysis of variation. In B. Hallgrímsson & B. K. Hall (Eds.), Variation: A central concept in biology (pp. 49–68). New York: Academic Press.

    Google Scholar 

  • Rohlf, F. J. (2003). tpsRegr, version 1.28–1.30. Department of ecology and evolution, Stony brook, NY: State University of New York.

  • Rohlf, F. J., & Bookstein, F. L. (2003). Computing the uniform component of shape variation. Systematic Biology, 52(1), 66–69. doi:10.1080/10635150390132759.

    Article  PubMed  Google Scholar 

  • Rohlf, F. J., & Marcus, L. F. (1993). A revolution in morphometrics. Trends in Ecology & Evolution, 8, 129–132. doi:10.1016/0169-5347(93)90024-J.

    Article  Google Scholar 

  • Rohlf, F. J., & Slice, D. (1990). Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40–59. doi:10.2307/2992207.

    Article  Google Scholar 

  • Siegel, A. F., & Benson, R. H. (1982). A robust comparison of biological shapes. Biometrics, 38(2), 341–350. doi:10.2307/2530448.

    Article  PubMed  CAS  Google Scholar 

  • Slice, D. E. (1998). Morpheus et al.: software for morphometric research, version revision 01-30-98. Department of Ecology and Evolution, Stony Brook, NY: State University of New York.

  • Slice, D. (2001). Landmark coordinates aligned by procrustes analysis do not lie in Kendall’s shape space. Systematic Biology, 50, 141–149. doi:10.1080/10635150119110.

    Article  PubMed  CAS  Google Scholar 

  • Sun Microsystems Inc (1992–2006). Java(tm) development kit, version 1.1.8_005. Santa Clara, CA: Sun Microsystems, Inc.

  • Theobald, D. L., & Wuttke, D. S. (2006). Empirical Bayes hierarchical models for regularizing maximum likelihood estimation in the matrix Gaussian procrustes problem. Proceedings of the National Academy of Sciences of the United States of America, 103(49), 18521–18527. doi:10.1073/pnas.0508445103.

    Article  PubMed  CAS  Google Scholar 

  • van der Linde, K. & Houle D. (2004–2008). Wings. Tallahassee: Florida State University. Available at: http://www.kimvdlinde.com/morphometrics.

  • van der Linde, K. (2005–2008). Geometrics package. Tallahassee: Florida State University. Available at: http://www.kimvdlinde.com/morphometrics.

  • Verboon, P., & Gabriel, K. R. (1995). Generalized procrustes analysis with iterative weighting to achieve resistance. The British Journal of Mathematical and Statistical Psychology, 48, 57–73.

    Google Scholar 

  • Walker, J. A. (2000). Ability of geometric morphometric methods to estimate a known covariance matrix. Systematic Biology, 49(4), 686–696. doi:10.1080/106351500750049770.

    Article  PubMed  CAS  Google Scholar 

  • Zelditch, M. L., Straney, D. O., Swiderski, D. L., & Carmichael, A. C. (1990). Variation in developmental constraints in Sigmodon. Evolution; International Journal of Organic Evolution, 44, 1738–1748. doi:10.2307/2409503.

    Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists: A primer. Amsterdam: Elsevier.

    Google Scholar 

Download references

Acknowledgments

We thank D. Adams, E. Marquez, F. J. Rohlf, and M. Zelditch for discussions and a reviewer and B. Hallgrimsson for their comments on the manuscript. This work was funded by NSF grant DEB-0129219 to D.H. and by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 RR021813. Information on the National Centers for Biomedical Computing can be obtained from http://nihroadmap.nih.gov/bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim van der Linde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Linde, K., Houle, D. Inferring the Nature of Allometry from Geometric Data. Evol Biol 36, 311–322 (2009). https://doi.org/10.1007/s11692-009-9061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-009-9061-z

Keywords

Navigation