Evolutionary Biology

, Volume 36, Issue 2, pp 225–234 | Cite as

The Nature of Evolutionary Radiations: A Case Study Involving Devonian Trilobites

  • Francine R. AbeEmail author
  • Bruce S. Lieberman
Research Article


Evolutionary radiations, times of profound diversification of species against a broader background of more muted evolutionary change, have long been considered one of the fundamental patterns in the fossil record. Further, given the important role geological, environmental, and climatic processes play in causing speciation, analyzing the biogeographic context of radiations can yield important insight into their evolutionary mechanisms. In this study we examine biogeographic patterns and quantify rates of speciation in a diverse group of Devonian trilobites, the calmoniids, that has been hailed as a classic paleontological example of an evolutionary radiation. In particular, a phylogenetic biogeographic analysis—modified Brooks Parsimony Analysis—was used to examine the processes and geographic setting of speciation within the group. Results indicate that the Malvinokaffric Realm was a geographically complex area, and this geographic complexity created various opportunities for speciation via geodispersal and vicariance that created the fuel that fed the speciation in these taxa. Part of the geographic complexity was created not only by the inherent geologic backdrop of the region, but the overlying changes of sea level rise and fall. Rates of speciation were highest when sea level was lowest. Low sea level encouraged isolation of faunas in different tectonic basins. By contrast, sea level rise facilitated range expansion and geodispersal to other distinct tectonic basins, and speciation rates concomitantly fell; however, the taxa with the expanded ranges were later fodder for diversification when sea level fell again. Here we present a view of evolutionary radiations driven fundamentally by external abiotic factors—geology and climate—that cause range expansion and opportunities for geographic isolation with resultant rapid speciation.


Evolutionary radiations Macroevolution Trilobites Biogeography Speciation rates Devonian 



We thank the Panorama Society of the Natural History Museum and Biodiversity Research Center (to FRA) and NSF DEB 0716162 (to BSL) for funding and Ed Wiley, Benedikt Hallgrimsson, and one anonymous reviewer for comments.


  1. Boucot, A. J. (1988). Devonian biogeography; an update. In N. J. McMillan, A. F. Embry, & D. J. Glass (Eds.), Devonian of the World (pp. 211–227). Canadian Society of Petroleum Geologists, Calgary.Google Scholar
  2. Carvalho, M. G. P. (2006). Devonian trilobites from the Falkland Islands. Palaeontology, 49(1), 21–34. doi: 10.1111/j.1475-4983.2005.00529.x.CrossRefGoogle Scholar
  3. Carvalho, M. G. P., & Edgecombe, G. D. (1991). Lower-early middle Devonian calmoniid trilobites from Mato Grosso, Brazil, and related species from Paraná. American Museum Novitates, 3022, 1–13.Google Scholar
  4. Carvalho, M. G. P., Edgecombe, G., & Lieberman, B. S. (1997). Devonian calmoniid trilobites from the Parnaíba Basin, Piauí State, Brazil. American Museum Novitates, 3192, 1–11.Google Scholar
  5. Carvalho, M. G. P., Edgecombe, G. D., & Smith, L. (2003). New calmoniid trilobites (Phacopina, Acastoidea) from the Devonian of Bolivia. American Museum Novitates, 3407, 1–17. doi: 10.1206/0003-0082(2003)407<0001:NCTPAF>2.0.CO;2.CrossRefGoogle Scholar
  6. Cocks, L. R. M., & Torsvik, T. H. (2002). Earth geography from 500 to 400 million years ago: A faunal and palaeomagnetic review. Journal of the Geological Society, 159(6), 631–644. doi: 10.1144/0016-764901-118.CrossRefGoogle Scholar
  7. Cooper, M. R. (1986). Facies shifts, sea-level changes and event stratigraphy in the Devonian of South Africa. South African Journal of Science, 82(5), 255–258.Google Scholar
  8. Copper, P. (1977). Paleolatitudes in the Devonian of Brazil and the Frasnian-Famennian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 21(3), 165–207. doi: 10.1016/0031-0182(77)90020-7.CrossRefGoogle Scholar
  9. Cracraft, J. (1982). Geographic differentiation, cladistics, and vicariance biogeography: Reconstructing the tempo and mode of evolution. American Zoologist, 22(2), 411–424.Google Scholar
  10. Edgecombe, G. D. (1992). Trilobite phylogeny and the Cambrian-Ordovician “Event”: Cladistic reappraisal. In M. J. Novacek & Q. Wheeler (Eds.), Extinction and phylogeny (pp. 144–177). New York: Columbia University Press.Google Scholar
  11. Edgecombe, G. D., Vaccari, N. E., & Waisfeld, B. G. (1994). Lower Devonian calmoniid trilobites from the Argentine Precordillera; new taxa of the Bouleia group, and remarks on the tempo of calmoniid radiation. Geological Magazine, 131(4), 449–464.CrossRefGoogle Scholar
  12. Eldredge, N. (1979). Alternative approaches to evolutionary theory. Bulletin of Carnegie Museum of Natural History, 13, 7–19.Google Scholar
  13. Eldredge, N. (1989). Macroevolutionary dynamics: Species niches, and adaptive peaks. Columbus: McGraw-Hill.Google Scholar
  14. Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process: method and theory in comparative biology. New York: Columbia University Press.Google Scholar
  15. Eldredge, N., & Ormiston, A. R. (1979). Biogeography of Silurian and Devonian trilobites of the Malvinokaffric realm. In J. Gray, & A. J. Boucot (Eds.), Historical biogeography, plate tectonics, and the changing environment (pp. 147–167).Google Scholar
  16. Engelmann, G. F., & Wiley, E. O. (1977). The place of ancestor-descendant relationships in phylogeny reconstruction. Systematic Zoology, 26(1), 1–11. doi: 10.2307/2412861.CrossRefGoogle Scholar
  17. Erwin, T. L. (1979). Thoughts on the evolutionary history of ground beetles: Hypotheses generated from comparative faunal analyses of lowland forest sites in temperate and tropical regions. In T. L. Erwin, G. E. Ball, & D. R. Whitehead (Eds.), Carabid beetles, their evolution, natural history, and classification (pp. 539–592). The Hague: W. Junk.Google Scholar
  18. Foote, M. (2000a). Origination and extinction components of taxonomic diversity: General problems. Paleobiology, 26(sp 4), 74–102. doi: 10.1666/0094-8373(2000)26[74:OAECOT]2.0.CO;2.CrossRefGoogle Scholar
  19. Foote, M. (2000b). Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology, 26(4), 578–605. doi: 10.1666/0094-8373(2000)026<0578:OAECOT>2.0.CO;2.CrossRefGoogle Scholar
  20. Gilinsky, N. L., & Bambach, R. K. (1987). Asymmetrical patterns of origination and extinction in higher taxa. Paleobiology, 13(4), 427–445.Google Scholar
  21. Givnish, T. J., & Sytsma, K. J. (1997). Molecular evolution and adaptive radiation (p. 621). New York: Cambridge University Press. xvii.Google Scholar
  22. Grahn, Y. (2005). Devonian chitinozoan biozones of Western Gondwana. Acta Geologica Polonica, 55(3), 211–227.Google Scholar
  23. Hillis, D. M., & Huelsenbeck, J. P. (1992). Signal, noise, and reliability in molecular phylogenetic analyses. The Journal of Heredity, 83(3), 189.PubMedGoogle Scholar
  24. House, M. R., & Gradstein, F. M. (2004). The Devonian period. In F. M. Gradstein, J. G. Ogg, & A. G. Smith (Eds.), A geologic time scale (pp. 202–221). Cambridge: Cambridge University Press.Google Scholar
  25. Hulbert, R. C., Jr. (1993). Taxonomic evolution in North American Neogene horses (Subfamily Equinae): The rise and fall of an adaptive radiation. Paleobiology, 19(2), 216–234.Google Scholar
  26. Isaacson, P. A., & Sablock, P. E. (1988). Devonian system in Bolivia, Peru, and northern Chile. In: N. J. McMillan, A. F. Embry, & D. J. Glass (Eds.), Devonian of the World (pp. 719–728). Canadian Society of Petroleum Geologists, Calgary.Google Scholar
  27. Johnson, J. G., Klapper, G., & Sandberg, C. A. (1985). Devonian eustatic fluctuations in Euramerica. Bulletin of the Geological Society of America, 96(5), 567–587. doi: 10.1130/0016-7606(1985)96<567:DEFIE>2.0.CO;2.CrossRefGoogle Scholar
  28. Kaufmann, B. (2006). Calibrating the Devonian time scale: A synthesis of U–Pb ID–TIMS ages and conodont stratigraphy. Earth-Science Reviews, 76(3–4), 175–190. doi: 10.1016/j.earscirev.2006.01.001.CrossRefGoogle Scholar
  29. Lieberman, B. S. (1993). Systematics and biogeography of the “Metacryphaeus Group” Calmoniidae (Trilobita, Devonian) with comments on adaptive radiations and the geological history of the Malvinokaffric realm. Journal of Paleontology, 67(4), 549–570.Google Scholar
  30. Lieberman, B. S. (2000). Paleobiogeography. New York: Kluwer Academic Publishers.Google Scholar
  31. Lieberman, B. S. (2001). A test of whether rates of speciation were unusually high during the Cambrian radiation. Proceedings: Biological Sciences, 268(1477), 1707–1714. doi: 10.1098/rspb.2001.1712.PubMedCrossRefGoogle Scholar
  32. Lieberman, B. S. (2003). Paleobiogeography: The relevance of fossils to biogeography. Annual Review of Ecology Evolution and Systematics, 34(1), 51–69. doi: 10.1146/annurev.ecolsys.34.121101.153549.CrossRefGoogle Scholar
  33. Lieberman, B. S. (2005). Geobiology and paleobiogeography: Tracking the coevolution of the earth and its biota. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1–2), 23–33. doi: 10.1016/j.palaeo.2004.10.012.CrossRefGoogle Scholar
  34. Lieberman, B. S., Edgecombe, G. D., & Eldredge, N. (1991). Systematics and biogeography of the “Malvinella Group”, Calmoniidae (Trilobita, Devonian). Journal of Paleontology, 65(5), 824–843.Google Scholar
  35. Lieberman, B. S., & Eldredge, N. (1996). Trilobite biogeography in the Middle Devonian; geological processes and analytical methods. Paleobiology, 22(1), 66–79.Google Scholar
  36. Maguire, K. C., & Stigall, A. L. (2008). Paleobiogeography of Miocene Equinae of North America: A phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeography, Palaeoclimatology, Palaeoecology, 267(3–4), 175–184. doi: 10.1016/j.palaeo.2008.06.014.CrossRefGoogle Scholar
  37. Mayr, E. (1942). Systematics and the origin of species from the viewpoint of a zoologist. New York: Columbia University Press.Google Scholar
  38. McGhee, G. R. (1996). The Late Devonian mass extinction: The Frasnian/Famennian crisis. New York: Columbia University Press.Google Scholar
  39. Nee, S. (2006). Birth-death models in macroevolution. Annual Review of Ecology Evolution and Systematics, 37, 1–17. doi: 10.1146/annurev.ecolsys.37.091305.110035.CrossRefGoogle Scholar
  40. Phillimore, A. B., & Price, T. D. (2008). Density-dependent cladogenesis in birds. PLoS Biology, 6(3), e71. doi: 10.1371/journal.pbio.0060071.PubMedCrossRefGoogle Scholar
  41. Platnick, N. I. (1992). Patterns of biodiversity. In N. Eldredge (Ed.), Systematics, ecology, and the biodiversity crisis (p. 220). New York: Columbia University Press.Google Scholar
  42. Rode, A. L., & Lieberman, B. S. (2004). Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology, 211(3–4), 345–359. doi: 10.1016/j.palaeo.2004.05.013.CrossRefGoogle Scholar
  43. Rode, A. L., & Lieberman, B. S. (2005). Integrating evolution and biogeography: A case study involving Devonian crustaceans. Journal of Paleontology, 79(2), 267–276. doi: 10.1666/0022-3360(2005)079<0267:IEABAC>2.0.CO;2.CrossRefGoogle Scholar
  44. Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.Google Scholar
  45. Sepkoski, J. J. (1998). Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1366), 315–326. doi: 10.1098/rstb.1998.0212.PubMedCrossRefGoogle Scholar
  46. Simpson, G. G. (1953). The major features of evolution. New York: Columbia University Press.Google Scholar
  47. Smith, A. B. (1994). Systematics and the fossil record: Documenting evolutionary patterns. Oxford: Blackwell Publishing.Google Scholar
  48. Stanley, S. M. (1979). Macroevolution, pattern and process. San Francisco: W. H. Freeman.Google Scholar
  49. Swofford, D. L. (2002). PAUP*: Phylogenetic analysis using parsimony (* and other methods). Version 4.0*.Google Scholar
  50. Torsvik, T. H., & Cocks, L. R. M. (2004). Earth geography from 400 to 250 Ma: A palaeomagnetic, faunal and facies review. Journal of the Geological Society, 161(4), 555–572. doi: 10.1144/0016-764903-098.CrossRefGoogle Scholar
  51. Tucker, R. D., Bradley, D. C., Ver Straeten, C. A., Harris, A. G., Ebert, J. R., & McCutcheon, S. R. (1998). New U–Pb zircon ages and the duration and division of Devonian time. Earth and Planetary Science Letters, 158(3–4), 175–186. doi: 10.1016/S0012-821X(98)00050-8.CrossRefGoogle Scholar
  52. Vogler, A., & Goldstein, P. (1997). Adaptive radiation and taxon cycles in North American tiger beetles: A cladistic perspective. In T. J. Givnish & K. J. Sytsma (Eds.), Molecular evolution and adaptive radiation (pp. 353–373). Cambridge: Cambridge University Press.Google Scholar
  53. Vrba, E. S. (1980). Evolution, species and fossils: How does life evolve? South African Journal of Science, 76, 61–84.Google Scholar
  54. Vrba, E. S. (1984). What is species selection? Systematic Zoology, 33, 318–328. doi: 10.2307/2413077.CrossRefGoogle Scholar
  55. Vrba, E. S. (1987). Ecology in relation to speciation rates: Some case histories of Miocene-Recent mammal clades. Evolutionary Ecology, 1(4), 283–300. doi: 10.1007/BF02071554.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceUSA
  2. 2.Department of Geology and Natural History Museum and Biodiversity Research CenterUniversity of KansasLawrenceUSA

Personalised recommendations