Skip to main content

Patterns of Phenotypic Divergence in Wing Covariance Structure of Calopterygid Damselflies

Abstract

Comparing species differences in covariance patterns of traits subject to divergent selection pressures can increase our understanding to the mechanisms of phenotypic divergence. Different species of calopterygid damselflies have diverged in the melanized wing patch of males. This trait serves multiple ecological functions and has behavioral consequences in terms of sexual selection, interspecific interactions, reproductive isolation. We compared the phenotypic variance-covariance matrices (P) of wing traits among nine populations of four European species of calopterygid damselflies. We found modest divergence in covariance structure among populations of the same species, but strong divergence between species. Interestingly, the orientation of the first eigenvector of P (P max ) differed more between closely related species than between distantly related species, although this pattern was absent when overall covariance structures were compared. We also found that distantly related species but geographically closer had converged towards a similar covariance structure. Finally, divergence in covariance structure was correlated with divergence in wing patch length, but not with other wing traits. This last finding suggests that divergent selection on wing patch length might have affected the stability of P. These results indicate that P might not only reflect ancestral developmental pathways but might also be influenced by current ecology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arnold, S. J. (1992). Constraints on phenotypic evolution. American Naturalist, 140, S85–S107. doi:10.1086/285398.

    Article  Google Scholar 

  2. Arnold, S. J., Burger, R., Holenhole, P. A., Beverley, C. A., & Jones, A. G. (2008). Understanding the evolution and stability of the G-matrix. Evolution; International Journal of Organic Evolution, 62, 2451–2461. doi:10.1111/j.1558-5646.2008.00472.x.

    PubMed  Google Scholar 

  3. Arnold, S. J., Pfrender, M. E., & Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112–113, 9–32. doi:10.1023/A:1013373907708.

    PubMed  Article  Google Scholar 

  4. Askew, R. R. (1988). The dragonflies of Europe. Colchester, UK: Harley books.

    Google Scholar 

  5. Beldade, P., Koops, K., & Brakefield, P. M. (2002). Developmental constraints versus flexibility in morphological evolution. Nature, 416, 844–847. doi:10.1038/416844a.

    PubMed  Article  CAS  Google Scholar 

  6. Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–172. doi:10.1016/S0022-5193(84)80050-8.

    PubMed  Article  CAS  Google Scholar 

  7. Cheverud, J. M. (1996). Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology, 9, 5–42. doi:10.1046/j.1420-9101.1996.9010005.x.

    Article  Google Scholar 

  8. Clusella-Trullas, S., van Wyk, J. H., & Spotila, J. R. (2007). Thermal melanism in ectotherms. Journal of Thermal Biology, 32, 235–245. doi:10.1016/j.jtherbio.2007.01.013.

    Article  Google Scholar 

  9. Corbet, P. S. (1999). Dragonflies: Behaviour and ecology of Odonata. Colchester, UK: Harley Books.

    Google Scholar 

  10. Córdoba-Aguilar, A., & Cordero-Rivera, A. (2005). Evolution and ecology of Calopterygidae (Zygoptera: Odonata): Status of knowledge and research perspectives. Neotropical Entomology, 34, 861–879. doi:10.1590/S1519-566X2005000600001.

    Article  Google Scholar 

  11. Debat, V., Begin, M., Legout, H., & David, J. R. (2003). Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature. Evolution; International Journal of Organic Evolution, 57, 2773–2784.

    PubMed  Google Scholar 

  12. Debat, V., & David, P. (2001). Mapping phenotypes: canalization, plasticity and developmental stability. Trends in Ecology & Evolution, 16, 555–561. doi:10.1016/S0169-5347(01)02266-2.

    Article  Google Scholar 

  13. Debat, V., Milton, C. C., Rutherford, S., Klingenberg, C. P., & Hoffmann, A. A. (2006). Hsp90 and the quantitative variation of wing shape in Drosophila melanogaster. Evolution; International Journal of Organic Evolution, 60, 2529–2538.

    PubMed  CAS  Google Scholar 

  14. Dumont, H. J., Mertens, J., & De Coster, W. (1993). The Calopteryx-splendens-cline in southwestern France, analysed by quantitative wingspot analysis (Zygoptera: Calopterygidae). Odonatologica, 22, 345–351.

    Google Scholar 

  15. Dumont, H. J., Vanfleteren, J. R., De Jonckheere, J. F., & Weekers, P. H. H. (2005). Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences. Systematic Biology, 54, 347–362. doi:10.1080/10635150590949869.

    PubMed  Article  Google Scholar 

  16. Eroukhmanoff, F., & Svensson, E. I. (2008). Phenotypic integration and conserved covariance structure in calopterygid damselflies. Journal of Evolutionary Biology, 21, 514–526. doi:10.1111/j.1420-9101.2007.01488.x.

    PubMed  Article  CAS  Google Scholar 

  17. Frankino, W. A., Zwaan, B. J., Stern, D. L., & Brakefield, P. M. (2005). Natural selection and developmental constraints in the evolution of allometries. Science, 307, 718–720. doi:10.1126/science.1105409.

    PubMed  Article  CAS  Google Scholar 

  18. Funk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences of the United States of America, 103, 3209–3213. doi:10.1073/pnas.0508653103.

    PubMed  Article  CAS  Google Scholar 

  19. Game, E. T., & Caley, M. J. (2006). The stability of P in coral reef fishes. Evolution; International Journal of Organic Evolution, 60, 814–823.

    PubMed  Google Scholar 

  20. Goodin, J. T., & Johnson, M. S. (1992). Patterns of morphological covariation in Partula. Systematic Biology, 41, 292–304. doi:10.2307/2992568.

    Google Scholar 

  21. Hedenstrom, A., & Rosen, M. (2001). Predator versus prey: On aerial hunting and escape strategies in birds. Behavioral Ecology, 12, 150–156. doi:10.1093/beheco/12.2.150.

    Article  Google Scholar 

  22. Huey, R. B., Gilchrist, G. W., Carlson, M. L., Berrigan, D., & Serra, L. (2000). Rapid evolution of a geographic cline in size in an introduced fly. Science, 287, 308–309. doi:10.1126/science.287.5451.308.

    PubMed  Article  CAS  Google Scholar 

  23. Jamniczky, H. A., & Hallgrimsson, B. (2009). A comparison of covariance structure of wild and laboratory muroid crania. Evolution: International Journal of Organic Evolution. doi:10.1111/j.1558-5646.2009.00651.x.

    Google Scholar 

  24. Marden, J. H. (2008). Dragonfly flight performance: a model system for biomechanics, physiological genetics, and animal competitive behaviour, Chap. 19, pp. 249–259. In A. Córdoba-Aguilar (Ed.), Dragonflies and damselflies: Model organisms for ecological and evolutionary research. Oxford: Oxford University Press.

    Google Scholar 

  25. Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., et al. (1985). Developmental constraints and evolution: A perspective from the mountain lake conference on development and evolution. Quarterly Review of Biology, 60, 265–287.

    Article  Google Scholar 

  26. McGhee, G. R. (1999). Theoretical morphology: The concept and its applications. New York: Columbia University Press.

    Google Scholar 

  27. Nijhout, H. F. (2008). Developmental phenotypic landscapes. Evolutionary Biology, 35, 100–103. doi:10.1007/s11692-008-9024-9.

    Article  Google Scholar 

  28. Pelabon, C., Hansen, T. F., Carter, A. J., & Houle, D. (2006). Response of fluctuating and directional asymmetry to selection on wing shape in Drosophila melanogaster. Journal of Evolutionary Biology, 19, 764–776. doi:10.1111/j.1420-9101.2005.01054.x.

    PubMed  Article  CAS  Google Scholar 

  29. Polly, P. D. (2008). Developmental dynamics and G-matrices: Can morphometric spaces be used to model phenotypic evolution? Evolutionary Biology, 35, 83–96. doi:10.1007/s11692-008-9020-0.

    Article  Google Scholar 

  30. Revell, L. J. (2007). Skewers. Available via http://anolis.oeb.harvard.edu/~liam/programs/.

  31. Riska, B. (1985). Group size factors and geographic variation of morphometric correlation. Evolution; International Journal of Organic Evolution, 39, 792–803. doi:10.2307/2408679.

    Google Scholar 

  32. Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution; International Journal of Organic Evolution, 50, 1766–1774. doi:10.2307/2410734.

    Google Scholar 

  33. Schluter, D. (2000). The ecology of adaptive radiation. New York: Oxford University Press Inc.

    Google Scholar 

  34. Simon, J. L. (2000). Resampling Stats 2000. Virginia: Resampling Stats.

    Google Scholar 

  35. Sinervo, B., & Svensson, E. (2002). Correlational selection and the evolution of genomic architecture. Heredity, 89, 329–338. doi:10.1038/sj.hdy.6800148.

    PubMed  Article  CAS  Google Scholar 

  36. Siva-Jothy, M. T. (1999). Male wing pigmentation may affect reproductive success via female choice in a calopterygid damselfly (Zygoptera). Behaviour, 136, 1365–1377. doi:10.1163/156853999500776.

    Article  Google Scholar 

  37. Statsoft, Inc. STATISTICA [7]. (2004). Statsoft, I. Available at: www.statsoft.com.

  38. Steppan, S. J. (1997). Phylogenetic analysis of phenotypic covariance structure. 2. Reconstructing matrix evolution. Evolution; International Journal of Organic Evolution, 51, 587–594. doi:10.2307/2411130.

    Google Scholar 

  39. Svensson, E. I., Eroukhmanoff, F., & Friberg, M. (2006). Effects of natural and sexual selection on adaptive population divergence and premating isolation in a damselfly. Evolution; International Journal of Organic Evolution, 60, 1242–1253.

    PubMed  Google Scholar 

  40. Svensson, E. I., & Friberg, M. (2007). Selective predation on wing morphology in sympatric damselflies. American Naturalist, 170, 101–112.

    PubMed  Article  Google Scholar 

  41. Svensson, E. I., Karlsson, K., Friberg, M., & Eroukhmanoff, F. (2007). Gender differences in species recognition and the evolution of asymmetric sexual isolation. Current Biology, 17, 1943–1947. doi:10.1016/j.cub.2007.09.038.

    PubMed  Article  CAS  Google Scholar 

  42. Svensson, E. I., Kristoffersen, L., Oskarsson, K., & Bensch, S. (2004). Molecular population divergence and sexual selection on morphology in the banded demoiselle (Calopteryx splendens). Heredity, 93, 423–433. doi:10.1038/sj.hdy.6800519.

    PubMed  Article  CAS  Google Scholar 

  43. True, J. R., Edwards, K. A., Yamamoto, D., & Carroll, S. B. (1999). Drosophila wing melanin patterns form by vein-dependent elaboration of enzymatic prepatterns. Current Biology, 9, 1382–1391. doi:10.1016/S0960-9822(00)80083-4.

    PubMed  Article  CAS  Google Scholar 

  44. Tynkkynen, K., Rantala, M. J., & Suhonen, J. (2004). Interspecific aggression and character displacement in the damselfly Calopteryx splendens. Journal of Evolutionary Biology, 17, 759–767. doi:10.1111/j.1420-9101.2004.00733.x.

    PubMed  Article  CAS  Google Scholar 

  45. Usherwood, J. R., & Lehmann, F. (2008). Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. Journal of the Royal Society, Interface, 5, 1303–1307. doi:10.1098/rsif.2008.0124.

    PubMed  Article  Google Scholar 

  46. Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution; International Journal of Organic Evolution, 50, 967–976. doi:10.2307/2410639.

    Google Scholar 

  47. Wagner, G. P., Booth, G., & Bagheri-Chaichian, H. (1997). A population genetic theory of canalization. Evolution; International Journal of Organic Evolution, 51, 329–347. doi:10.2307/2411105.

    Google Scholar 

  48. Wallace, A. (2009). The effect of development on the direction of evolution: Toward a twenty-first century consensus. Evolution & Development, 6, 282–288.

    Google Scholar 

  49. Weekers, P. H. H., De Jonckheere, J. F., & Dumont, H. J. (2001). Phylogenetic relationships inferred from ribosomal ITS sequences and biogeographic patterns in representatives of the genus Calopteryx (Insecta: Odonata) of the west mediterranean and adjacent west European zone. Molecular Phylogenetics and Evolution, 20, 89–99. doi:10.1006/mpev.2001.0947.

    PubMed  Article  CAS  Google Scholar 

  50. West-Eberhard, M. J. (2003). Developmental plasticity and evolution. New York: Oxford University Press Inc.

    Google Scholar 

  51. Willmore, K. E., Young, N. M., & Richtsmeier, J. T. (2007). Phenotypic variability: Its Components, measurement and underlying developmental processes. Evolutionary Biology, 34, 99–120. doi:10.1007/s11692-007-9008-1.

    Article  Google Scholar 

  52. Wotton, R. J., & Newman, D. J. S. (2008). Evolution, diversification, and mechanics of dragonfly wings, Chap. 20, pp. 261–274. In A. Córdoba-Aguilar (Ed.), Dragonflies and damselflies Model organisms for ecological and evolutionary research. Oxford: Oxford University Press.

    Google Scholar 

  53. Zera, A. J. (2006). Evolution genetics of juvenile hormone and ecdysteroid regulation in Gryllus: A case study in the microevolution of endocrine regulation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 144, 365–379. doi:10.1016/j.cbpa.2005.11.026.

    Article  Google Scholar 

  54. Zera, A. J., Potts, J., & Kobus, K. (1998). The physiology of life-history trade-offs: Experimental analysis of a hormonally induced life-history trade-off in Gryllus assimilis. American Naturalist, 152, 7–23. doi:10.1086/286146.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to S. Kuchta, T. Gosden and two anonymous referees for constructive criticisms on the early drafts of this manuscript. This study was financially supported by The Ecole Normale Supérieure (ENS) and The Royal Physiographic Society in Lund (KFS) to FE, by the Fundación para el Fomento en Asturias de la Invetigación Cientifica Aplicada y la Tecnología (FICYT) to DO and the Swedish Research Council (VR) and The Swedish Council for Environment, Agriculture, and Spatial Planning (FORMAS) to EIS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabrice Eroukhmanoff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eroukhmanoff, F., Outomuro, D., Ocharan, F.J. et al. Patterns of Phenotypic Divergence in Wing Covariance Structure of Calopterygid Damselflies. Evol Biol 36, 214–224 (2009). https://doi.org/10.1007/s11692-009-9057-8

Download citation

Keywords

  • Phenotypic integration
  • Phenotypic plasticity
  • P-matrix
  • Speciation
  • Wing morphology